import std; // ダイクストラ // (H-2)*(W+1)の頂点をおいて、8方向に有向辺を張る void read(T...)(string S, ref T args) { auto buf = S.split; foreach (i, ref arg; args) { arg = buf[i].to!(typeof(arg)); } } void read_array(T)(string S, ref T[] arg) { arg = S.split.to!(T[]); } void main () { int H, W; readln.read(H, W); int[][] A = new int[][](H-2, W); foreach (i; 0..H-2) { readln.read_array(A[i]); A[i] = 0 ~ A[i]; } solve(H, W, A); } struct pair { int x; int y; } bool isValid (int[][] A, int x, int y) { if (x < 0 || y < 0 || A.length <= y || A[0].length <= x) { return false; } if (A[y][x] == -1) { return false; } return true; } void connectPath (ref Dijkstra!pair G, int[][] A, int x, int y) { int[] dx = [-1, 0, 1]; int[] dy = [-1, 0, 1]; foreach (i; 0..dx.length) { foreach (j; 0..dy.length) { if (i == 1 && j == 1) { continue; } if (isValid(A, x+dx[i], y+dx[j])) { G.input(pair(x, y), pair(x+dx[i], y+dy[j]), A[y+dy[j]][x+dx[i]]); } } } } void solve (int H, int W, int[][] A) { auto G = Dijkstra!pair(); foreach (X; 0..cast(int)A[0].length) { foreach (Y; 0..cast(int)A.length) { if (A[Y][X] == -1) { continue; } connectPath(G, A, X, Y); } } long ans = long.max; G.calculate(pair(0, 0)); foreach (Y2; 0..H-2) { if (pair(W, Y2) in G.node) { ans = min(ans, G.cost(pair(W, Y2))); //G.trace(pair(W, Y2)).writeln; //writeln(G.cost(pair(W, Y2))); } } if (ans == long.max) { writeln(-1); } else { writeln(ans); } } struct Dijkstra(T) { T[][T] graph; long[T][T] weight; struct dijkstra_pair { long distance; T path; T vertex; } dijkstra_pair[T] node; private bool is_calculated = false; // 頂点の型Tであるグラフの辺と重みを受け取る void input (T u, T v, long w) { graph[u] ~= v; weight[u][v] = w; node[u] = dijkstra_pair(long.max, u, u); node[v] = dijkstra_pair(long.max, v, v); } // ダイクストラのアルゴリズムに基づいて頂点startからの(連結成分の)最小重みを求める void calculate (T start) { if (start !in node) { stderr.writeln("Fatal error in dijkstra.calculate(T start) : This vertex is not in the graph!"); return; } // 以前の計算のリセット if (is_calculated) { foreach (ref x; node) { x.distance = long.max; x.path = x.vertex; } } node[start].distance = 0; node[start].path = start; // 優先度付きキューの宣言 BinaryHeap!(Array!dijkstra_pair, "b.distance < a.distance") PQueue; PQueue.insert(node[start]); int count = 0; while (!PQueue.empty) { auto begin = PQueue.front; PQueue.removeFront; if (node[begin.vertex].distance < begin.distance) { continue; } if (begin.vertex in graph) { foreach (ref x; graph[begin.vertex]) { if (node[begin.vertex].distance + weight[begin.vertex][x] < node[x].distance) { node[x].distance = node[begin.vertex].distance + weight[begin.vertex][x]; node[x].path = begin.vertex; PQueue.insert(node[x]); } } } } is_calculated = true; } // 経路復元 T[] trace (T end) { DList!T Q; T way = end; while (node[way].path != way) { Q.insertFront(way); way = node[way].path; } Q.insertFront(way); T[] ret; while (!Q.empty) { ret ~= Q.front; Q.removeFront; } return ret; } // 頂点endへの最小重みを出力 パスが存在しなければlong.maxを返す。 long cost (T end) { if (end !in node) { stderr.writeln("Fatal error in dijkstra.cost(T end) : This vertex is not in the graph!"); return long.max; } if (!is_calculated) { stderr.writeln("Costs are not calculatd. Do \"dijkstra.calculate(T start)\" first."); return long.max; } return node[end].distance; } }