from copy import deepcopy from random import randint from __pypy__.builders import StringBuilder import sys from os import read as os_read, write as os_write from atexit import register as atexist_register from typing import Generic, Iterator, List, Tuple, Dict, Iterable, Sequence, Callable, Union, Optional, TypeVar T = TypeVar('T') Graph = List[List[int]] Poly = List[int] Vector = List[int] Matrix = List[List[int]] Func10 = Callable[[int], None] Func20 = Callable[[int, int], None] Func11 = Callable[[int], int] Func21 = Callable[[int, int], int] Func31 = Callable[[int, int, int], int] class Fastio: ibuf = bytes() pil = pir = 0 sb = StringBuilder() def load(self): self.ibuf = self.ibuf[self.pil:] self.ibuf += os_read(0, 131072) self.pil = 0; self.pir = len(self.ibuf) def flush_atexit(self): os_write(1, self.sb.build().encode()) def flush(self): os_write(1, self.sb.build().encode()) self.sb = StringBuilder() def fastin(self): if self.pir - self.pil < 64: self.load() minus = x = 0 while self.ibuf[self.pil] < 45: self.pil += 1 if self.ibuf[self.pil] == 45: minus = 1; self.pil += 1 while self.ibuf[self.pil] >= 48: x = x * 10 + (self.ibuf[self.pil] & 15) self.pil += 1 if minus: return -x return x def fastin_string(self): if self.pir - self.pil < 64: self.load() while self.ibuf[self.pil] <= 32: self.pil += 1 res = bytearray() while self.ibuf[self.pil] > 32: if self.pir - self.pil < 64: self.load() res.append(self.ibuf[self.pil]) self.pil += 1 return res def fastout(self, x): self.sb.append(str(x)) def fastoutln(self, x): self.sb.append(str(x)); self.sb.append('\n') fastio = Fastio() rd = fastio.fastin; rds = fastio.fastin_string; wt = fastio.fastout; wtn = fastio.fastoutln; flush = fastio.flush atexist_register(fastio.flush_atexit) sys.stdin = None; sys.stdout = None def rdl(n): return [rd() for _ in range(n)] def wtnl(l): wtn(' '.join(map(str, l))) def wtn_yes(): wtn("Yes") def wtn_no(): wtn("No") def modinv(a: int, m: int) -> int: '''return x s.t. x == a^(-1) (mod m)''' b = m; u = 1; v = 0 while b: t = a // b a, b = b, a - t * b u, v = v, u - t * v u %= m return u # https://nyaannyaan.github.io/library/fps/berlekamp-massey.hpp def berlekamp_massey(s: Vector, mod: int) -> Vector: N = len(s) b = [1] c = [1] y = 1 for ed in range(1, N + 1): l = len(c) m = len(b) x = 0 for i, a in enumerate(c): x += a * s[ed - l + i] x %= mod b.append(0) m += 1 if x == 0: continue freq = x * modinv(y, mod) % mod if l < m: tmp = c[:] c[:0] = [0] * (m - l) for i in range(m): c[m - 1 - i] = (c[m - 1 - i] - freq * b[m - 1 - i]) % mod b = tmp y = x else: for i in range(m): c[l - 1 - i] = (c[l - 1 - i] - freq * b[m - 1 - i]) % mod c.reverse() return c MOD = 998244353 _IMAG = 911660635 _IIMAG = 86583718 _rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0) _rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0) _irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0) class NTT: @staticmethod def _fft(a: Vector) -> None: n = len(a) h = (n - 1).bit_length() le = 0 for le in range(0, h - 1, 2): p = 1 << (h - le - 2) rot = 1 for s in range(1 << le): rot2 = rot * rot % MOD rot3 = rot2 * rot % MOD offset = s << (h - le) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % MOD * _IMAG a[i + offset] = (a0 + a2 + a1 + a3) % MOD a[i + offset + p] = (a0 + a2 - a1 - a3) % MOD a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % MOD a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % MOD rot = rot * _rate3[(~s & -~s).bit_length()] % MOD if h - le & 1: rot = 1 for s in range(1 << (h - 1)): offset = s << 1 l = a[offset] r = a[offset + 1] * rot a[offset] = (l + r) % MOD a[offset + 1] = (l - r) % MOD rot = rot * _rate2[(~s & -~s).bit_length()] % MOD @staticmethod def _ifft(a: Vector) -> None: n = len(a) h = (n - 1).bit_length() le = h for le in range(h, 1, -2): p = 1 << (h - le) irot = 1 for s in range(1 << (le - 2)): irot2 = irot * irot % MOD irot3 = irot2 * irot % MOD offset = s << (h - le + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _IIMAG % MOD a[i + offset] = (a0 + a1 + a2 + a3) % MOD a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % MOD a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % MOD a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % MOD irot = irot * _irate3[(~s & -~s).bit_length()] % MOD if le & 1: p = 1 << (h - 1) for i in range(p): l = a[i] r = a[i + p] a[i] = l + r if l + r < MOD else l + r - MOD a[i + p] = l - r if l - r >= 0 else l - r + MOD @classmethod def ntt(cls, a: Vector) -> None: if len(a) <= 1: return cls._fft(a) @classmethod def intt(cls, a:Vector) -> None: if len(a) <= 1: return cls._ifft(a) iv = modinv(len(a), MOD) for i, x in enumerate(a): a[i] = x * iv % MOD @classmethod def multiply(cls, s: Vector, t: Vector) -> Vector: n, m = len(s), len(t) l = n + m - 1 if min(n, m) <= 60: a = [0] * l for i, x in enumerate(s): for j, y in enumerate(t): a[i + j] += x * y return [x % MOD for x in a] z = 1 << (l - 1).bit_length() a = s + [0] * (z - n) b = t + [0] * (z - m) cls._fft(a) cls._fft(b) for i, x in enumerate(b): a[i] = a[i] * x % MOD cls._ifft(a) a[l:] = [] iz = modinv(z, MOD) return [x * iz % MOD for x in a] @classmethod def pow2(cls, s: Vector) -> Vector: n = len(s) l = (n << 1) - 1 if n <= 60: a = [0] * l for i, x in enumerate(s): for j, y in enumerate(s): a[i + j] += x * y return [x % MOD for x in a] z = 1 << (l - 1).bit_length() a = s + [0] * (z - n) cls._fft(a) for i, x in enumerate(a): a[i] = x * x % MOD cls._ifft(a) a[l:] = [] iz = modinv(z, MOD) return [x * iz % MOD for x in a] @classmethod def ntt_doubling(cls, a: Vector) -> None: M = len(a) b = a[:] cls.intt(b) r = 1 zeta = pow(3, (MOD - 1) // (M << 1), MOD) for i, x in enumerate(b): b[i] = x * r % MOD r = r * zeta % MOD cls.ntt(b) a += b # https://nyaannyaan.github.io/library/fps/formal-power-series.hpp # https://nyaannyaan.github.io/library/fps/ntt-friendly-fps.hpp class FPS: @staticmethod def shrink(a: Poly) -> None: '''remove high degree coef == 0''' while a and not a[-1]: a.pop() @staticmethod def resize(a: Poly, length: int, val: int=0) -> None: a[length:] = [] a[len(a):] = [val] * (length - len(a)) @staticmethod def add(l: Poly, r: Union[Poly, int]) -> Poly: '''l += r''' if type(r) is int: res = l[:] res[0] = (res[0] + r) % MOD return res if type(r) is list: if len(l) < len(r): res = r[::] for i, x in enumerate(l): res[i] += x else: res = l[::] for i, x in enumerate(r): res[i] += x return [x % MOD for x in res] raise TypeError() @classmethod def sub(cls, l: Poly, r: Union[Poly, int]) -> Poly: '''l -= r''' if type(r) is int: return cls.add(l, -r) if type(r) is list: return cls.add(l, cls.neg(r)) raise TypeError() @staticmethod def neg(a: Poly) -> Poly: '''a *= -1''' return [MOD - x if x else 0 for x in a] @staticmethod def mul(l: Poly, r: Union[Poly, int]) -> Poly: ''' if r is int: l *= r if r is Polynomial: convolve l and r ''' if type(r) is int: return [x * r % MOD for x in l] if type(r) is list: if not l or not r: return [] return NTT.multiply(l, r) raise TypeError() @staticmethod def matmul(l: Poly, r: Poly) -> Poly: 'not verified' return [x * r[i] % MOD for i, x in enumerate(l)] @classmethod def div(cls, l: Poly, r: Poly) -> Poly: '''return: quo s.t. l = r*quo + rem''' if len(l) < len(r): return [] n = len(l) - len(r) + 1 if len(r) > 64: return NTT.multiply(l[::-1][:n], cls.inv(r[::-1], n))[:n][::-1] f, g = l[::], r[::] cnt = 0 while g and not g[-1]: g.pop() cnt += 1 coef = modinv(g[-1], MOD) g = cls.mul(g, coef) deg = len(f) - len(g) + 1 gs = len(g) quo = [0] * deg for i in range(deg)[::-1]: quo[i] = x = f[i + gs - 1] % MOD for j, y in enumerate(g): f[i + j] -= x * y return cls.mul(quo, coef) + [0] * cnt @classmethod def modulo(cls, l: Poly, r: Poly) -> Poly: '''return: rem s.t. l = r*quo + rem''' res = cls.sub(l, NTT.multiply(cls.div(l, r), r)) cls.shrink(res) return res @classmethod def divmod(cls, l: Poly, r: Poly) -> Tuple[Poly, Poly]: '''return: quo, rem s.t. l = r*quo + rem''' quo = cls.div(l, r) rem = cls.sub(l, NTT.multiply(quo, r)) cls.shrink(rem) return quo, rem @staticmethod def eval(a: Poly, x: int) -> int: r = 0; w = 1 for v in a: r += w * v % MOD w = w * x % MOD return r % MOD @staticmethod def inv(a: Poly, deg: int=-1) -> Poly: '''return: g s.t. a*g == 1 (mod x**deg)''' # assert(self[0] != 0) if deg == -1: deg = len(a) res = [0] * deg res[0] = modinv(a[0], MOD) d = 1 while d < deg: f = [0] * (d << 1) tmp = min(len(a), d << 1) f[:tmp] = a[:tmp] g = [0] * (d << 1) g[:d] = res[:d] NTT.ntt(f) NTT.ntt(g) for i, x in enumerate(g): f[i] = f[i] * x % MOD NTT.intt(f) f[:d] = [0] * d NTT.ntt(f) for i, x in enumerate(g): f[i] = f[i] * x % MOD NTT.intt(f) for j in range(d, min(d << 1, deg)): if f[j]: res[j] = MOD - f[j] else: res[j] = 0 d <<= 1 return res @classmethod def pow(cls, f: Poly, k: int, deg=-1) -> Poly: '''return: g s.t. g == f**k (mod x**deg)''' n = len(f) if deg == -1: deg = n if k == 0: if not deg: return [] ret = [0] * deg ret[0] = 1 return ret for i, x in enumerate(f): if x: rev = modinv(x, MOD) ret = cls.mul(cls.exp(cls.mul(cls.log(cls.mul(f, rev)[i:], deg), k), deg), pow(x, k, MOD)) ret[:0] = [0] * (i * k) if len(ret) < deg: cls.resize(ret, deg) return ret return ret[:deg] if (i + 1) * k >= deg: break return [0] * deg @staticmethod def exp(f: Poly, deg: int=-1) -> Poly: '''return: g s.t. log(g) == f (mod x ** deg)''' # assert(not self or self[0] == 0) if deg == -1: deg = len(f) inv = [0, 1] def integral(f: Poly) -> Poly: n = len(f) while len(inv) <= n: j, k = divmod(MOD, len(inv)) inv.append((-inv[k] * j) % MOD) return [0] + [x * inv[i + 1] % MOD for i, x in enumerate(f)] def diff(f: Poly) -> Poly: return [x * i % MOD for i, x in enumerate(f) if i] b: Poly = [1, (f[1] if 1 < len(f) else 0)] c: Poly = [1] z1: Poly= [] z2: Poly = [1, 1] m = 2 while m < deg: y = b + [0] * m NTT.ntt(y) z1 = z2 z = [y[i] * p % MOD for i, p in enumerate(z1)] NTT.intt(z) z[:m >> 1] = [0] * (m >> 1) NTT.ntt(z) for i, p in enumerate(z1): z[i] = z[i] * (-p) % MOD NTT.intt(z) c[m >> 1:] = z[m >> 1:] z2 = c + [0] * m NTT.ntt(z2) tmp = min(len(f), m) x = f[:tmp] + [0] * (m - tmp) x = diff(x) x.append(0) NTT.ntt(x) for i, p in enumerate(x): x[i] = y[i] * p % MOD NTT.intt(x) for i, p in enumerate(b): if not i: continue x[i - 1] -= p * i % MOD x += [0] * m for i in range(m - 1): x[m + i], x[i] = x[i], 0 NTT.ntt(x) for i, p in enumerate(z2): x[i] = x[i] * p % MOD NTT.intt(x) x.pop() x = integral(x) x[:m] = [0] * m for i in range(m, min(len(f), m << 1)): x[i] += f[i] NTT.ntt(x) for i, p in enumerate(y): x[i] = x[i] * p % MOD NTT.intt(x) b[m:] = x[m:] m <<= 1 return b[:deg] @classmethod def log(cls, f: Poly, deg=-1) -> Poly: '''return: g s.t. g == log(f) (mod x**deg)''' # assert(a[0] == 1) if deg == -1: deg = len(f) return cls.integral(cls.mul(cls.diff(f), cls.inv(f, deg))[:deg - 1]) @staticmethod def integral(f: Poly) -> Poly: n = len(f) res = [0] * (n + 1) if n: res[1] = 1 for i in range(2, n + 1): j, k = divmod(MOD, i) res[i] = (-res[k] * j) % MOD for i, x in enumerate(f): res[i + 1] = res[i + 1] * x % MOD return res @staticmethod def diff(f: Poly) -> Poly: '''return: dfdx''' return [i * x % MOD for i, x in enumerate(f) if i] # https://nyaannyaan.github.io/library/fps/mod-pow.hpp def mod_pow(k: int, base: Poly, d: Poly) -> Poly: assert(d) inv = FPS.inv(d[::-1]) def quo(poly: Poly) -> Poly: if len(poly) < len(d): return [] n = len(poly) - len(d) + 1 return NTT.multiply(poly[:len(poly) - n - 1:-1], inv[:n])[n - 1::-1] res = [1] b = base[:] while k: if k & 1: res = NTT.multiply(res, b) res = FPS.sub(res, NTT.multiply(quo(res), d)) FPS.shrink(res) b = NTT.pow2(b) b = FPS.sub(b, NTT.multiply(quo(b), d)) FPS.shrink(b) k >>= 1 # assert(len(b) + 1 <= len(d)) # assert(len(res) + 1 <= len(d)) return res # https://nyaannyaan.github.io/library/matrix/black-box-linear-algebra.hpp def inner_product(a: Poly, b: Poly) -> int: res = 0 n = len(a) assert(n == len(b)) for i in range(n): res += a[i] * b[i] % MOD return res % MOD def random_poly(n: int) -> Poly: return [randint(0, MOD - 1) for _ in range(n)] class ModMatrix: def __init__(self, n: int) -> None: self.mat = [[0] * n for _ in range(n)] def add(self, i: int, j: int, x: int) -> None: self.mat[i][j] += x def __mul__(self, r: Poly) -> Poly: assert(len(self.mat) == len(r)) return [sum(matij * r[j] % MOD for j, matij in enumerate(mati)) % MOD for mati in self.mat] def apply(self, i: int, r: int) -> None: mati = self.mat[i] for j, matij in enumerate(mati): mati[j] = matij * r % MOD class SparseMatrix: def __init__(self, n: int) -> None: self.mat: List[List[int]] = [[] for _ in range(n)] def add(self, i: int, j: int, x: int) -> None: self.mat[i].append(j << 30 | x) def __mul__(self, r: Poly) -> Poly: assert(len(self.mat) == len(r)) return [sum((jx & 0x3fffffff) * r[jx >> 30] % MOD for jx in mati) % MOD for mati in self.mat] def apply(self, i: int, r: int) -> None: for idx, jx in enumerate(self.mat[i]): self.mat[i][idx] = (jx >> 30) << 30 | ((jx & 0x3fffffff) * r % MOD) def vector_minpoly(b: List[Poly]) -> Poly: assert(b) n = len(b); m = len(b[0]) u = random_poly(m) a = [0] * n for i, bi in enumerate(b): a[i] = inner_product(bi, u) return berlekamp_massey(a, MOD) def mat_minpoly(A: Union[ModMatrix, SparseMatrix]) -> Poly: n = len(A.mat) u = random_poly(n) b: List[Poly] = [0] * (n << 1 | 1) for i in range(len(b)): b[i] = u u = A * u return vector_minpoly(b) def fast_pow(A: Union[ModMatrix, SparseMatrix], b: Poly, k: int) -> Poly: n = len(b) mp = mat_minpoly(A) c = mod_pow(k, [0, 1], mp[::-1]) res = [0] * n for ci in c: res = FPS.add(res, FPS.mul(b, ci)) b = A * b return res def fast_det(A: Union[ModMatrix, SparseMatrix]) -> int: n = len(A.mat) assert(n == len(A.mat)) D = random_poly(n) while 1: while any([not x for x in D]): D = random_poly(n) AD = deepcopy(A) for i, d in enumerate(D): AD.apply(i, d) mp = mat_minpoly(AD) if mp[-1] == 0: return 0 if len(mp) != n + 1: continue det = -mp[-1] if n & 1 else mp[-1] Ddet = 1 for d in D: Ddet = Ddet * d % MOD return det * modinv(Ddet, MOD) % MOD exit(1) # https://yukicoder.me/problems/no/1112 K, M, N = rd(), rd(), rd() m = ModMatrix(K * K) for i in range(M): p, q, r = rd() - 1, rd() - 1, rd() - 1 m.add(p * K + q, q * K + r, 1) b = [0] * (K * K) for i in range(K): b[i * K] = 1 res = fast_pow(m, b, N - 2) wtn(sum(res[:K]))