#include using namespace std; #define double long double using ll = long long; using VB = vector; using VVB = vector; using VVVB = vector; using VC = vector; using VVC = vector; using VI = vector; using VVI = vector; using VVVI = vector; using VVVVI = vector; using VL = vector; using VVL = vector; using VVVL = vector; using VVVVL = vector; using VD = vector; using VVD = vector; using VVVD = vector; //using P = pair; #define REP(i, n) for (ll i = 0; i < (int)(n); i++) #define FOR(i, a, b) for (ll i = a; i < (ll)(b); i++) #define ALL(a) (a).begin(),(a).end() constexpr int INF = 1001001001; constexpr ll LINF = 1001001001001001001ll; constexpr int DX[] = {1, 0, -1, 0}; constexpr int DY[] = {0, 1, 0, -1}; template< typename T1, typename T2> inline bool chmax(T1 &a, T2 b) {return a < b && (a = b, true); } template< typename T1, typename T2> inline bool chmin(T1 &a, T2 b) {return a > b && (a = b, true); } const ll MOD = 998244353; const int MAX_N = 40; int par[MAX_N]; int rnk[MAX_N]; int siz[MAX_N]; void init(int n) { REP(i,n) { par[i] = i; rnk[i] = 0; siz[i] = 1; } } int find(int x) { if (par[x] == x) { return x; } else { return par[x] = find(par[x]); } } void unite(int x, int y) { x = find(x); y = find(y); if (x == y) return; int s = siz[x] + siz[y]; if (rnk[x] < rnk[y]) { par[x] = y; } else { par[y] = x; if (rnk[x] == rnk[y]) rnk[x]++; } siz[find(x)] = s; } bool same(int x, int y) { return find(x) == find(y); } int size(int x) { return siz[find(x)]; } ll mod_pow(ll x, ll n, ll mod) { ll res = 1; x %= mod; while (n > 0) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } ll gcd(ll x, ll y) { if (y == 0) return x; return gcd(y, x % y); } typedef pair P0; struct edge { int to; ll cost; }; const int MAX_V = 20; //const ll LINF = 1LL<<60; int V; vector G[MAX_V]; ll d[MAX_V]; void dijkstra(ll s) { priority_queue, greater > que; fill(d, d + V, LINF); d[s] = 0; que.push(P0(0, s)); while (!que.empty()) { P0 p = que.top(); que.pop(); int v = p.second; if (d[v] < p.first) continue; for (edge e : G[v]) { if (d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; que.push(P0(d[e.to], e.to)); } } } } /* double EPS = 1e-10; double add(double a, double b) { if (abs(a + b) < EPS * (abs(a) + abs(b))) return 0; return a + b; } struct P { double x, y; P() {} P(double x, double y) : x(x), y(y) { } P operator + (P p) { return P(add(x, p.x), add(y, p.y)); } P operator - (P p) { return P(add(x, -p.x), add(y, -p.y)); } P operator * (double d) { return P(x * d, y * d); } double dot(P p) { return add(x * p.x, y * p.y); } double det(P p) { return add(x * p.y, -y * p.x); } }; bool on_seg(P p1, P p2, P q) { return () } P intersection(P p1, P p2, P q1, P q2) { return p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / (q2 - q1).det(p2 - p1)); } */ /* VL f(400010, 1); ll C(ll n, ll k) { return f[n] * mod_pow(f[k], MOD - 2, MOD) % MOD * mod_pow(f[n - k], MOD - 2, MOD) % MOD; } */ int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); //REP(i, 400009) f[i + 1] = f[i] * (i + 1) % MOD; int N, K, sx, sy, gx, gy; cin >> N >> K; V = N + 2; VI x(V), y(V); REP(i, V) cin >> x[i] >> y[i]; int l = 0, r = INF; while (l + 1 < r) { int m = (l + r) / 2; REP(i, V) { G[i] = {}; REP(j, V) { G[i].push_back({j, (abs(x[i] - x[j]) + abs(y[i] - y[j]) - 1) / m}); } } dijkstra(0); if (d[1] > K) l = m; else r = m; } cout << r << endl; }