//#pragma GCC optimize("O2") #define _USE_MATH_DEFINES #define _EXT_CODECVT_SPECIALIZATIONS_H 1 #define _EXT_ENC_FILEBUF_H 1 #include using namespace std; /* #include using namespace atcoder; //*/ /* #include #include using bll = boost::multiprecision::cpp_int; using bdouble = boost::multiprecision::number>; using namespace boost::multiprecision; //*/ #define ENV_USE_FASTIO 1 #define ENV_USE_ENDL 0 #if !defined(LOCAL_DEV) && ENV_USE_FASTIO #define USE_FASTIO #endif #if ENV_USE_ENDL #define NEWLINE std::endl #else #define NEWLINE '\n' #endif //#define int long long using ll = long long; //constexpr ll MOD = (ll)1e9 + 7; //primitive root = 5 constexpr ll MOD = 998244353; //primitive root = 3 //INT_MAX = (1<<31)-1 = 2147483647, INT64_MAX = (1LL<<63)-1 = 9223372036854775807 constexpr ll INF = std::numeric_limits::max() == INT_MAX ? (ll)1e9 + 7 : (ll)1e18 + 1; constexpr double EPS = 1e-9; constexpr ll dx[4] = {1, 0, -1, 0}; constexpr ll dy[4] = {0, 1, 0, -1}; constexpr ll dx8[8] = {1, 1, 0, -1, -1, -1, 0, 1}; constexpr ll dy8[8] = {0, 1, 1, 1, 0, -1, -1, -1}; namespace std { struct IOPre { static constexpr int TEN = 10, SZ = TEN * TEN * TEN * TEN; std::array num; constexpr IOPre() : num{} { for (int i = 0; i < SZ; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i * 4 + j] = static_cast(n % TEN + '0'); n /= TEN; } } } }; struct IO { #if !HAVE_DECL_FREAD_UNLOCKED #define fread_unlocked fread #endif #if !HAVE_DECL_FWRITE_UNLOCKED #define fwrite_unlocked fwrite #endif static constexpr int SZ = 1 << 17, LEN = 32, TEN = 10, HUNDRED = TEN * TEN, THOUSAND = HUNDRED * TEN, TENTHOUSAND = THOUSAND * TEN, MAGIC_MULTIPLY = 205, MAGIC_SHIFT = 11, MASK = 15, TWELVE = 12, SIXTEEN = 16; static constexpr IOPre io_pre = {}; std::array input_buffer, output_buffer; int input_ptr_left, input_ptr_right, output_ptr_right, precision_value; IO() : input_buffer{}, output_buffer{}, input_ptr_left{}, input_ptr_right{}, output_ptr_right{}, precision_value{20} {} IO(const IO&) = delete; IO(IO&&) = delete; IO& operator=(const IO&) = delete; IO& operator=(IO&&) = delete; ~IO() { flush(); } template struct is_bounded_char_array : std::false_type {}; template struct is_bounded_char_array : std::true_type {}; template struct is_char { static constexpr bool value = std::is_same_v; }; template struct is_bool { static constexpr bool value = std::is_same_v; }; template struct is_string { static constexpr bool value = std::is_same_v || std::is_same_v || std::is_same_v || is_bounded_char_array{}; }; template struct is_custom { static constexpr bool value = false; }; template struct is_custom> { static constexpr bool value = true; }; template struct is_default { static constexpr bool value = is_char::value || is_bool::value || is_string::value || std::is_integral_v; }; template struct is_iterable { static constexpr bool value = false; }; template struct is_iterable< T, typename std::void_t()))>> { static constexpr bool value = true; }; template struct is_applyable { static constexpr bool value = false; }; template struct is_applyable::type>, std::void_t(std::declval()))>> { static constexpr bool value = true; }; template struct has_val { template static auto check(U v) -> decltype(v.val(), std::true_type()); static auto check(...) -> decltype(std::false_type()); typedef decltype(check(std::declval())) type; static constexpr bool value = type::value; }; template struct has_to_string { template static auto check(U v) -> decltype(v.to_string(), std::true_type()); static auto check(...) -> decltype(std::false_type()); typedef decltype(check(std::declval())) type; static constexpr bool value = type::value; }; template struct has_constructor_string { template static auto check(U v) -> decltype(U(std::declval()), std::true_type()); static auto check(...) -> decltype(std::false_type()); typedef decltype(check(std::declval())) type; static constexpr bool value = type::value; }; template struct has_constructor_ll { template static auto check(U v) -> decltype(U(std::declval()), std::true_type()); static auto check(...) -> decltype(std::false_type()); typedef decltype(check(std::declval())) type; static constexpr bool value = type::value; }; template static constexpr bool needs_newline = (is_iterable::value || is_applyable::value) && (!is_default::value); template struct any_needs_newline { static constexpr bool value = false; }; template struct any_needs_newline> { static constexpr bool value = false; }; template struct any_needs_newline> { static constexpr bool value = needs_newline(std::declval()))> || any_needs_newline>::value; }; inline void load() { memmove(std::begin(input_buffer), std::begin(input_buffer) + input_ptr_left, input_ptr_right - input_ptr_left); input_ptr_right = input_ptr_right - input_ptr_left + static_cast(fread_unlocked(std::begin(input_buffer) + input_ptr_right - input_ptr_left, 1, SZ - input_ptr_right + input_ptr_left, stdin)); input_ptr_left = 0; } inline void read_char(char& c) { if (input_ptr_left + LEN > input_ptr_right) { load(); } c = input_buffer[input_ptr_left++]; } inline void read_string(std::string& x) { char c; while (read_char(c), c < '!') { continue; } x = c; while (read_char(c), c >= '!') { x += c; } } template inline std::enable_if_t, void> read_float(T& x) { std::string s; read_string(s); x = std::stod(s); } template inline std::enable_if_t, void> read_int(T& x) { if (input_ptr_left + LEN > input_ptr_right) load(); char c = 0; do c = input_buffer[input_ptr_left++]; while (c < '-'); [[maybe_unused]] bool minus = false; if constexpr (std::is_signed::value) if (c == '-') minus = true, c = input_buffer[input_ptr_left++]; x = 0; while (c >= '0') x = x * TEN + (c & MASK), c = input_buffer[input_ptr_left++]; if constexpr (std::is_signed::value) if (minus) x = -x; } inline void skip_space() { if (input_ptr_left + LEN > input_ptr_right) { load(); } while (input_buffer[input_ptr_left] <= ' ') { input_ptr_left++; } } inline void flush() { fwrite_unlocked(std::begin(output_buffer), 1, output_ptr_right, stdout); output_ptr_right = 0; } inline void write_char(char c) { if (output_ptr_right > SZ - LEN) { flush(); } output_buffer[output_ptr_right++] = c; } inline void write_bool(bool b) { if (output_ptr_right > SZ - LEN) { flush(); } output_buffer[output_ptr_right++] = b ? '1' : '0'; } inline void write_string(const std::string& s) { for (auto x : s) write_char(x); } inline void write_string(const char* s) { while (*s) write_char(*s++); } inline void write_string(char* s) { while (*s) write_char(*s++); } template inline std::enable_if_t, void> write_float(T x) { std::ostringstream s; s.setf(ios::fixed), s.precision(precision_value); s << x; write_string(s.str()); } template inline std::enable_if_t, void> write_int(T x) { if (output_ptr_right > SZ - LEN) flush(); if (!x) { output_buffer[output_ptr_right++] = '0'; return; } if constexpr (std::is_signed::value == true) if (x < 0) output_buffer[output_ptr_right++] = '-', x = -x; int i = TWELVE; std::array buf{}; while (x >= TENTHOUSAND) { memcpy(std::begin(buf) + i, std::begin(io_pre.num) + (x % TENTHOUSAND) * 4, 4); x /= TENTHOUSAND; i -= 4; } if (x < HUNDRED) { if (x < TEN) { output_buffer[output_ptr_right++] = static_cast('0' + x); } else { std::uint32_t q = (static_cast(x) * MAGIC_MULTIPLY) >> MAGIC_SHIFT, r = static_cast(x) - q * TEN; output_buffer[output_ptr_right] = static_cast('0' + q); output_buffer[output_ptr_right + 1] = static_cast('0' + r); output_ptr_right += 2; } } else { if (x < THOUSAND) memcpy(std::begin(output_buffer) + output_ptr_right, std::begin(io_pre.num) + (x << 2) + 1, 3), output_ptr_right += 3; else memcpy(std::begin(output_buffer) + output_ptr_right, std::begin(io_pre.num) + (x << 2), 4), output_ptr_right += 4; } memcpy(std::begin(output_buffer) + output_ptr_right, std::begin(buf) + i + 4, TWELVE - i); output_ptr_right += TWELVE - i; } template IO& operator>>(T& x) { static_assert(is_custom::value or is_default::value or is_iterable::value or is_applyable::value or std::is_floating_point_v or has_constructor_string::value or has_constructor_ll::value); static_assert(!is_bool::value); if constexpr (is_custom::value) { typename T::internal_value_type y; read_int(y); x = y; } else if constexpr (is_default::value) { if constexpr (is_string::value) { read_string(x); } else if constexpr (is_char::value) { read_char(x); } else if constexpr (std::is_integral_v) { read_int(x); } } else if constexpr (is_iterable::value) { for (auto& y : x) operator>>(y); } else if constexpr (is_applyable::value) { std::apply([this](auto&... y) { ((this->operator>>(y)), ...); }, x); } else if constexpr (std::is_floating_point_v) { read_float(x); } else if constexpr (has_constructor_string::value) { std::string y; read_string(y); x = y; } else if constexpr (has_constructor_ll::value) { long long y; read_int(y); x = y; } return *this; } template IO& operator<<(T_&& x) { using T = typename std::remove_cv< typename std::remove_reference::type>::type; static_assert(is_custom::value or is_default::value or is_iterable::value or is_applyable::value or std::is_floating_point_v or has_val::value or has_to_string::value); if constexpr (is_custom::value) { write_int(x.get()); } else if constexpr (is_default::value) { if constexpr (is_bool::value) { write_bool(x); } else if constexpr (is_string::value) { write_string(x); } else if constexpr (is_char::value) { write_char(x); } else if constexpr (std::is_integral_v) { write_int(x); } } else if constexpr (is_iterable::value) { constexpr char sep = needs_newline ? '\n' : ' '; int i = 0; for (const auto& y : x) { if (i++) write_char(sep); operator<<(y); } } else if constexpr (is_applyable::value) { constexpr char sep = (any_needs_newline>>::value) ? '\n' : ' '; int i = 0; std::apply([this, &sep, &i](auto const&... y) { (((i++ ? write_char(sep) : void()), this->operator<<(y)), ...); }, x); } else if constexpr (std::is_floating_point_v) { write_float(x); } else if constexpr (has_val::value) { write_int(x.val()); } else if constexpr (has_to_string::value) { write_string(x.to_string()); } return *this; } IO* tie(std::nullptr_t) { return this; } void sync_with_stdio(bool) {} void setf(...) {} void precision(int n) { precision_value = n; } }; IO& operator<<(IO& io, [[maybe_unused]]std::ostream& (*var)(std::ostream&)) { io << '\n'; return io; } IO fastio; } // namespace std #ifdef USE_FASTIO #define cin fastio #define cout fastio #endif #if defined(LOCAL_TEST) || defined(LOCAL_DEV) #define BOOST_STACKTRACE_USE_ADDR2LINE #define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line #define _GNU_SOURCE 1 #include #endif #ifdef LOCAL_TEST namespace std { template class dvector : public std::vector { public: using std::vector::vector; template , std::nullptr_t> = nullptr> std::vector::reference operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> const T_ operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> constexpr T_& operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> constexpr const T_& operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } }; template class darray : public std::array { public: using std::array::array; constexpr darray(std::initializer_list il) { *this = {}; int i = 0; for (auto&& x : il) this->operator[](i++) = x; } constexpr T& operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } constexpr const T& operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } }; template struct tuple_size> : integral_constant {}; template struct tuple_element> { using type = T; }; template > class dmultiset : public std::multiset { public: using std::multiset::multiset; const typename std::multiset::iterator erase(const typename std::multiset::iterator it) { return std::multiset::erase(it); } std::size_t erase([[maybe_unused]] const T& x) { std::cerr << boost::stacktrace::stacktrace() << '\n'; assert(false); } std::size_t erase_all_elements(const T& x) { return std::multiset::erase(x); } }; template std::ostream& operator<<(std::ostream& s, const std::pair& p) { return s << "(" << p.first << ", " << p.second << ")"; } template std::ostream& operator<<(std::ostream& s, const std::array& v) { s << "{ "; for (std::size_t i = 0; i < N; ++i){ s << v[i] << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::set& se) { s << "{ "; for (auto it = se.begin(); it != se.end(); ++it){ s << *it << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::multiset& se) { s << "{ "; for (auto it = se.begin(); it != se.end(); ++it){ s << *it << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::map& m) { s << "{\n"; for (auto it = m.begin(); it != m.end(); ++it){ s << "\t" << it->first << " : " << it->second << "\n"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::deque& v) { s << "{ "; for (std::size_t i = 0; i < v.size(); ++i){ s << v[i] << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::dvector& v) { s << "{ "; for (std::size_t i = 0; i < v.size(); ++i){ s << v[i] << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::dvector>& vv) { s << "\\\n"; for (std::size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; } template , std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&v)[N]) { s << "{ "; for (std::size_t i = 0; i < N; ++i){ s << v[i] << "\t"; } s << "}"; return s; } template , std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&vv)[N][M]) { s << "\\\n"; for (std::size_t i = 0; i < N; ++i){ s << vv[i] << "\n"; } return s; } } // namespace std #define vector dvector #define array darray #define multiset dmultiset class SIGFPE_exception : std::exception {}; class SIGSEGV_exception : std::exception {}; void catch_SIGFPE([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); } void catch_SIGSEGV([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); } signed convertedmain(); signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); } #define main() convertedmain() #else #define erase_all_elements erase #endif #ifdef LOCAL_DEV void debug_impl() { std::cerr << '\n'; } template void debug_impl(Head& head, Tail&... tail) { std::cerr << " " << head << (sizeof...(Tail) ? "," : ""); debug_impl(tail...); } template void debug_impl(const Head& head, const Tail&... tail) { std::cerr << " " << head << (sizeof...(Tail) ? "," : ""); debug_impl(tail...); } #define debug(...) do { std::cerr << ":" << __LINE__ << " (" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return local; } #else #define debug(...) do {} while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return prod; } #endif #define repoverload3(_1, _2, _3, name, ...) name #define rep3(i, a, b) for(ll i=(a), i##_length=(b); i=(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep3(i, 0, n) #define rrep(...) repoverload3(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define rrepeq3(i, a, b) rrep3(i, (a)+1, (b)+1) #define rrepeq2(i, n) rrep3(i, 1, (n)+1) #define rrepeq1(n) rrep3(i, 1, (n)+1) #define rrepeq(...) repoverload3(__VA_ARGS__, rrepeq3, rrepeq2, rrepeq1)(__VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) void p() { std::cout << NEWLINE; } template void p(Head& head, Tail&... tail) { std::cout << head << (sizeof...(Tail) ? " " : ""); p(tail...); } template void p(const Head& head, const Tail&... tail) { std::cout << head << (sizeof...(Tail) ? " " : ""); p(tail...); } template inline void pv(const T& v, const U& add = {}) { auto itbegin = std::begin(v), itend = std::end(v); for (auto it = itbegin; it != itend; std::advance(it, 1)) cout << (it == itbegin ? "" : " ") << *it + add; cout << NEWLINE; } template inline bool chmax(T& a, T b) { return a < b && (a = b, true); } template inline bool chmin(T& a, T b) { return a > b && (a = b, true); } template inline void uniq(T& v) { std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); } template inline ll sz(const T& v) { return std::size(v); } template std::vector make_vector_impl(std::vector& sizes, typename std::enable_if<(N==1), const T&>::type x) { return std::vector(sizes.front(),x); } template auto make_vector_impl(std::vector& sizes, typename std::enable_if<(N>1), const T&>::type x) { ll size=sizes.back(); sizes.pop_back(); return std::vector(sizes,x))>(size,make_vector_impl(sizes,x)); } template auto make_vector(const ll (&sizes)[N], const T& x=T()) { std::vector s(N); for(std::size_t i=0; i(s,x); } template std::array make_array() { return std::array{}; } template =1), std::nullptr_t> = nullptr> auto make_array() { return std::array()),Head>(); } template class zip_helper { template struct basic_iterator { using difference_type = Diff; using value_type = Type; using pointer = Ptr; using reference = Ref; using terator_category = Category; }; class zip_iterator : basic_iterator().begin())...>> { public: ll idx_; std::tuple().begin())...> iters_; template auto deref(std::index_sequence) const { return typename zip_iterator::value_type{*std::get(iters_)...}; } template void increment(std::index_sequence) { [[maybe_unused]] auto l = {(++std::get(iters_), 0)...}; } explicit zip_iterator(decltype(iters_) iters) : idx_(0), iters_{std::move(iters)} {} zip_iterator& operator++() { ++idx_; increment(std::index_sequence_for{}); return *this; } zip_iterator operator++(int) { auto saved{*this}; ++idx_; increment(std::index_sequence_for{}); return saved; } bool operator!=(const zip_iterator& other) const { return iters_ != other.iters_; } template = nullptr> auto operator*() const { return std::tuple_cat(std::make_tuple(this->idx_), this->deref(std::index_sequence_for{})); } template = nullptr> auto operator*() const { return this->deref(std::index_sequence_for{}); } }; public: zip_helper(T&... seqs) : begin_{std::make_tuple(seqs.begin()...)}, end_{std::make_tuple(seqs.end()...)} {} zip_iterator begin() const { return begin_; } zip_iterator end() const { return end_; } zip_iterator begin_, end_; }; template auto zip(T&&... seqs) { return zip_helper{seqs...}; } template auto zipindex(T&&... seqs) { return zip_helper{seqs...}; } #include #if __has_include() #ifdef LOCAL_TEST template std::ostream& operator<<(std::ostream& s, const __gnu_pbds::tree& se) { s << "{ "; for (auto it = se.begin(); it != se.end(); ++it){ s << *it << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const __gnu_pbds::gp_hash_table& m) { s << "{\n"; for (auto it = m.begin(); it != m.end(); ++it){ s << "\t" << it->first << " : " << it->second << "\n"; } s << "}"; return s; } #endif class custom_hash { public: constexpr static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15, x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9, x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } std::size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } std::size_t operator()(const std::string& x) const { return std::hash()(x); } template && std::is_integral_v, std::nullptr_t> = nullptr> std::size_t operator() (const std::pair& x) const { std::size_t lhs = operator()(x.first), rhs = operator()(x.second); return lhs ^ (rhs + 0x9e3779b9 + (lhs << 6) + (lhs >> 2)); } template , std::nullptr_t> = nullptr> std::size_t operator()(const std::vector& x) const { std::size_t h = x.size(); for (auto&& k : x) h ^= operator()(k) + 0x9e3779b9 + (h << 6) + (h >> 2); return h; } template , std::nullptr_t> = nullptr> std::size_t operator()(const std::array& x) const { std::size_t h = x.size(); for (auto&& k : x) h ^= operator()(k) + 0x9e3779b9 + (h << 6) + (h >> 2); return h; } }; template class fmap : public __gnu_pbds::gp_hash_table { public: using __gnu_pbds::gp_hash_table::gp_hash_table; template fmap(std::initializer_list> il) : __gnu_pbds::gp_hash_table() { for (auto&& x : il) __gnu_pbds::gp_hash_table::insert(std::pair(*x.begin(), *(x.begin() + 1))); } template ll count(const T& x) const { return __gnu_pbds::gp_hash_table::find(x) != __gnu_pbds::gp_hash_table::end(); } }; #else template using fmap = std::map; #endif /*-----8<-----template-----8<-----*/ //[lib](internal)edge.cpp using EdgeCostType = ll; using usize = ll; template class edge_type { public: inline static int edgeidx = 0; usize from, to; T cost; int idx; edge_type() {} edge_type(usize from, usize to, T cost) : from(from), to(to), cost(cost), idx(edgeidx++) {} edge_type(usize from, usize to, T cost, usize idx) : from(from), to(to), cost(cost), idx(idx) {} bool operator<(const edge_type& r) const { return r.cost < cost; } }; using Edge = edge_type; ostream& operator<<(ostream &s, const Edge &e) { s << "{ " << e.from << " -> " << e.to << ", " << e.cost << " }"; return s; } inline void addedge(vector> &g, usize from, usize to, EdgeCostType cost) { g[from].emplace_back(from, to, cost, Edge::edgeidx); g[to].emplace_back(to, from, cost, Edge::edgeidx); Edge::edgeidx++; } //最短路木の親頂点を元にstart->goalの経路を作成 vector buildPath(const vector &prev, ll goal) { vector path; for (ll u = goal; u >= 0; u = prev[u]) path.push_back(u); reverse(path.begin(), path.end()); return path; } vector> conv_edge2ll(const vector> &g) { vector> h(g.size()); for (auto&& v : g) for (auto&& e : v) h[e.from].emplace_back(e.to); return h; } vector> conv_ll2edge(const vector> &g) { vector> h(g.size()); for (int i = 0; i < (int)g.size(); i++) for (auto&& j : g[i]) { if (i <= j) continue; h[i].emplace_back(i, j, 1, Edge::edgeidx); h[j].emplace_back(j, i, 1, Edge::edgeidx); Edge::edgeidx++; } return h; } /* 計算量:O(min(V^2, ElogV)) 引数  g:探索するグラフ  start:探索するスタートノード番号 戻り値  dist:スタートノードから各頂点までの距離  prev:最短路木の親頂点 負辺があっても動作するが最悪指数時間かかる https://theory-and-me.hatenablog.com/entry/2019/09/08/182442 */ void dijkstra_elogv(const vector> &g, ll start, vector &dist, vector &prev) { int gsize = g.size(); dist.assign(gsize, INF); dist[start] = 0; prev.assign(gsize, -1); auto compare_edge = [](const Edge& x, const Edge& y) { return x.cost != y.cost ? (x.cost > y.cost) : (x.from != y.from ? x.from < y.from : x.to < y.to); }; priority_queue, decltype(compare_edge)> que(compare_edge); que.emplace(-1, start, 0); while (!que.empty()) { Edge e = que.top(); que.pop(); if (dist[e.to] < e.cost) continue; prev[e.to] = e.from; for (auto&& f : g[e.to]) { auto newcost = e.cost + f.cost; if (dist[f.to] > newcost) { dist[f.to] = newcost; que.emplace(f.from, f.to, newcost); } } } } template void dijkstra_elogv(const size_t gsize, const Func &gfunc, ll start, vector &dist, vector &prev) { dist.assign(gsize, INF); dist[start] = 0; prev.assign(gsize, -1); auto compare_edge = [](const Edge& x, const Edge& y) { return x.cost != y.cost ? (x.cost > y.cost) : (x.from != y.from ? x.from < y.from : x.to < y.to); }; priority_queue, decltype(compare_edge)> que(compare_edge); que.emplace(-1, start, 0); while (!que.empty()) { Edge e = que.top(); que.pop(); if (dist[e.to] < e.cost) continue; prev[e.to] = e.from; gfunc(e.to, [&](const usize nextv, const EdgeCostType nextcost) { auto newcost = e.cost + nextcost; if (dist[nextv] > newcost) { dist[nextv] = newcost; que.emplace(e.to, nextv, newcost); } }); } } void dijkstra_v2(const vector> &g, ll start, vector &dist, vector &prev) { int gsize = g.size(); dist.assign(gsize, INF); dist[start] = 0; prev.assign(gsize, -1); vector seen(gsize, false); for (int k = 0; k < gsize - 1; ++k) { EdgeCostType minval = INF; int idx = -1; for (int i = 0; i < gsize; ++i) { if (!seen[i] && chmin(minval, dist[i])) idx = i; } if (idx == -1) break; seen[idx] = true; for (auto&& e : g[idx]) { if (chmin(dist[e.to], dist[idx] + e.cost)) prev[e.to] = idx; } } } template void dijkstra_v2(const size_t gsize, const Func &gfunc, ll start, vector &dist, vector &prev) { dist.assign(gsize, INF); dist[start] = 0; prev.assign(gsize, -1); vector seen(gsize, false); for (int k = 0; k < gsize - 1; ++k) { EdgeCostType minval = INF; int idx = -1; for (int i = 0; i < gsize; ++i) { if (!seen[i] && chmin(minval, dist[i])) idx = i; } if (idx == -1) break; seen[idx] = true; gfunc(idx, [&](const usize nextv, const EdgeCostType nextcost) { if (chmin(dist[nextv], dist[idx] + nextcost)) prev[nextv] = idx; }); } } /* constexpr size_t dijkstra_v2_threshold = 0; void dijkstra(const vector>& g, ll start, vector& dist, vector& prev) { if (g.size() <= dijkstra_v2_threshold) dijkstra_v2(g, start, dist, prev); else dijkstra_elogv(g, start, dist, prev); } template void dijkstra(const size_t gsize, const Func &gfunc, ll start, vector &dist, vector &prev) { if (gsize <= dijkstra_v2_threshold) dijkstra_v2(gsize, gfunc, start, dist, prev); else dijkstra_elogv(gsize, gfunc, start, dist, prev); } */ //[lib]dijkstra.cpp //[depends on](internal)edge.cpp template class fibonacci_heap { class node_type; using node_ptr = node_type *; class node_type { public: node_ptr parent; node_ptr child; node_ptr left; node_ptr right; usize rank; bool mark; T key; usize prev; node_type() : parent(nullptr), child(nullptr), left(nullptr), right(nullptr), rank(0), mark(false), key(std::numeric_limits::max()), prev(-1) {}; }; vector nodes; node_ptr root; vector table; public: fibonacci_heap(const usize n) : nodes(n), root(nullptr), table(std::ceil(std::log(n + 1) * 2.08), nullptr) {} bool empty() const { return root == nullptr; } edge_type pop() { edge_type ret = {root->prev, static_cast(root - nodes.data()), root->key}; usize max = 0; const auto push = [&](node_ptr v) -> void { while (true) { node_ptr u = table[v->rank]; if (u == nullptr) { table[v->rank] = v; break; } table[v->rank] = nullptr; if (u->key < v->key) { std::swap(u, v); } const node_ptr c = v->child; if (c == nullptr) { u->left = u; u->right = u; v->child = u; } else { u->left = c->left; u->right = c; c->left->right = u; c->left = u; } u->parent = v; v->rank += 1; } max = std::max(max, v->rank + 1); }; { node_ptr v = root->right; while (v != root) { const node_ptr next = v->right; push(v); v = next; } } if (root->child != nullptr) { node_ptr v = root->child; do { const node_ptr next = v->right; v->mark = false; push(v); v = next; } while (v != root->child); } root = nullptr; for (usize i = 0; i != max; i += 1) { const node_ptr v = table[i]; if (v == nullptr) { continue; } table[i] = nullptr; v->parent = nullptr; if (root == nullptr) { root = v; v->left = v; v->right = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (root->key > v->key) { root = v; } } } return ret; } void update_key(const usize v_, const T key, const usize prev) { node_ptr v = &nodes[v_]; if (v->key <= key) { return; } v->key = key; v->prev = prev; if (v->left == nullptr) { if (root == nullptr) { v->left = v; v->right = v; root = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (key < root->key) { root = v; } } return; } if (v->parent == nullptr) { if (key < root->key) { root = v; } return; } else { if (v->parent->key <= key) { return; } } while (true) { const node_ptr p = v->parent; v->left->right = v->right; v->right->left = v->left; v->parent = nullptr; p->rank -= 1; if (p->child == v) { if (p->rank == 0) { p->child = nullptr; } else { p->child = v->right; } } v->left = root->left; v->right = root; root->left->right = v; root->left = v; v->mark = false; v = p; if (v->parent == nullptr) { break; } if (!v->mark) { v->mark = true; break; } } if (root->key > key) { root = &nodes[v_]; } } }; /* 計算量:O(E+VlogV) 引数  g:探索するグラフ  start:探索するスタートノード番号 戻り値  dist:スタートノードから各頂点までの距離  prev:最短路木の親頂点 */ void dijkstra(const vector> &g, ll start, vector &dist, vector &prev) { dist.assign(g.size(), INF); dist[start] = 0; prev.assign(g.size(), -1); fibonacci_heap heap(g.size()); heap.update_key(start, 0, -1); while (!heap.empty()) { const auto top = heap.pop(); dist[top.to] = top.cost; prev[top.to] = top.from; for (const auto &edge : g[top.to]) { heap.update_key(edge.to, top.cost + edge.cost, edge.from); } } } template void dijkstra(const ll gsize, const Func &gfunc, ll start, vector &dist, vector &prev) { dist.assign(gsize, INF); dist[start] = 0; prev.assign(gsize, -1); fibonacci_heap heap(gsize); heap.update_key(start, 0, -1); while (!heap.empty()) { const auto top = heap.pop(); dist[top.to] = top.cost; prev[top.to] = top.from; gfunc(top.to, [&](const usize nextv, const EdgeCostType nextcost) { heap.update_key(nextv, top.cost + nextcost, top.to); }); } } /*-----8<-----library-----8<-----*/ void solve() { ll N, K; cin >> N >> K; ll SX, SY, GX, GY; cin >> SX >> SY >> GX >> GY; vector X(N), Y(N); rep(i, N) cin >> X[i] >> Y[i]; X.push_back(SX); X.push_back(GX); Y.push_back(SY); Y.push_back(GY); N += 2; //初期は left->OK / right->NG になっています using rangetype = ll; rangetype left = 1e9; rangetype right = 0; auto isOK = [&](rangetype val) -> bool { vector> g(N); rep(i,N)rep(j,i+1,N){ if (i == j) continue; ll d = abs(X[i] - X[j]) + abs(Y[i] - Y[j]); /* 0..val 0 val+1..2val 1 */ ll c = (d-1) / val; chmax(c, 0LL); addedge(g, i, j, c); } vector dist, prev; dijkstra(g, N-2, dist, prev); return dist[N - 1] <= K; }; while (abs(right - left) > 1) { rangetype mid = left + (right - left) / 2; if (isOK(mid)) left = mid; else right = mid; } p(left); } signed main() { #ifdef LOCAL_DEV /* std::ifstream in("in.txt"); std::cin.rdbuf(in.rdbuf()); //*/ #else std::cin.tie(nullptr); std::ios::sync_with_stdio(false); #endif /* ll Q; cin >> Q; while(Q--)solve(); //*/solve(); return 0; }