# BFS, ダイクストラのどちらかか、ワーシャルフロイドはないだろう
# ダイクストラでやってみるか
# Pによって各辺コストが変わる、(マンハッタン距離+2P-1)//2P
# それでK+1歩まででゴールにたどり着けるか
# を二分探索
# BFSだと盤面のマス目を距離で埋める必要あるが盤面がない
# 二分探索の都合上下限を0にできないと思ったけどできそう

N, K = map(int, input().split())
Sx, Sy, Gx, Gy = map(int, input().split())
XY = [(Sx, Sy, 0)]
for i in range(N):
    x, y = map(int, input().split())
    XY.append((x, y, i+1))
XY.append((Gx, Gy, N+1))

edges = [[] for i in range(N+2)]
for i in range(N+2):
    for j in range(i+1, N+2):
        cost = abs(XY[i][0]-XY[j][0])+abs(XY[i][1]-XY[j][1])
        edges[i].append((j, cost))
        edges[j].append((i, cost))
        
# ダイクストラの辺コストをPで改造したバージョン
from heapq import heappush, heappop
INF = 10 ** 18
def dijkstra(s, n, connect, P): #(始点, ノード数)
    distance = [INF] * n
    que = [(0, s)] #(distance, node)
    distance[s] = 0
    confirmed = [False] * n # ノードが確定済みかどうか
    while que:
        w,v = heappop(que)
        if distance[v]<w:
            continue
        confirmed[v] = True
        for to, cost in connect[v]: # ノード v に隣接しているノードに対して
            cost = (cost+P-1)//P-1
            if confirmed[to] == False and distance[v] + cost < distance[to]:
                distance[to] = distance[v] + cost
                heappush(que, (distance[to], to))
    return distance

#distance = dijkstra(0, N+2, edges, 4)
# 第2は頂点数、ゴールではない

NG = 0
OK = 10**8
while (OK-NG)>1:
    mid = (OK+NG)//2
    if dijkstra(0, N+2, edges, mid)[N+1] <= K:
        OK = mid
    else:
        NG = mid
print(OK)