N=int(input())
D={};mod=998244353
D['U']=[];D['F']=[];D['W']=[];D['P']=[]
def xgcd(a, b):
    x0, y0, x1, y1 = 1, 0, 0, 1
    while b != 0:
        q, a, b = a // b, b, a % b
        x0, x1 = x1, x0 - q * x1
        y0, y1 = y1, y0 - q * y1
    return a, x0, y0

def modinv(a, m):
    g, x, y = xgcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
    else:
        return x % m

al=0;A=[]
for _ in range(N):
  x,y=input().split()
  y=int(y)
  al+=y
  D[x].append(y)

a,b,c=0,0,0
zz=modinv(N-1,mod)
for u in D['U']:
  x=pow(N-1,u,mod)
  y=pow(N-2,u,mod)
  z=pow(zz,u,mod)
  d=(x-y)*z%mod 
  a+=d 
  a%=mod
  
for u in D['F']:
  x=pow(N-1,u,mod)
  y=pow(N-2,u,mod)
  z=pow(zz,u,mod)
  d=(x-y)*z%mod 
  b+=d 
  b%=mod

for u in D['W']:
  x=pow(N-1,u,mod)
  y=pow(N-2,u,mod)
  z=pow(zz,u,mod)
  d=(x-y)*z%mod 
  c+=d 
  c%=mod
  
d=pow(N-1,al,mod)
ans=a
ans*=b
ans%=mod 
ans*=c
ans%=mod
ans*=d
ans%=mod
ans*=len(D['P'])
ans%=mod
print(ans)