#include #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") using namespace std; using std::cout; using std::cin; using std::endl; using ll=long long; using ld=long double; ll ILL=2167167167167167167; const int INF=2100000000; const int mod=998244353; #define rep(i,a,b) for (int i=a;i using _pq = priority_queue, greater>; template ll LB(vector &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template ll UB(vector &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;} template bool chmax(T &a,const T &b){if(a void So(vector &v) {sort(v.begin(),v.end());} template void Sore(vector &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} void yneos(bool a){if(a) cout<<"Yes\n"; else cout<<"No\n";} template void vec_out(vector &p){for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout< T vec_min(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} template T vec_max(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} template T vec_sum(vector &a){assert(!a.empty());T ans=a[0]-a[0];for(auto &x:a) ans+=x;return ans;} int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;} namespace atcoder { namespace internal { std::vector sa_naive(const std::vector& s) { int n = int(s.size()); std::vector sa(n); std::iota(sa.begin(), sa.end(), 0); std::sort(sa.begin(), sa.end(), [&](int l, int r) { if (l == r) return false; while (l < n && r < n) { if (s[l] != s[r]) return s[l] < s[r]; l++; r++; } return l == n; }); return sa; } std::vector sa_doubling(const std::vector& s) { int n = int(s.size()); std::vector sa(n), rnk = s, tmp(n); std::iota(sa.begin(), sa.end(), 0); for (int k = 1; k < n; k *= 2) { auto cmp = [&](int x, int y) { if (rnk[x] != rnk[y]) return rnk[x] < rnk[y]; int rx = x + k < n ? rnk[x + k] : -1; int ry = y + k < n ? rnk[y + k] : -1; return rx < ry; }; std::sort(sa.begin(), sa.end(), cmp); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } std::swap(tmp, rnk); } return sa; } // SA-IS, linear-time suffix array construction // Reference: // G. Nong, S. Zhang, and W. H. Chan, // Two Efficient Algorithms for Linear Time Suffix Array Construction template std::vector sa_is(const std::vector& s, int upper) { int n = int(s.size()); if (n == 0) return {}; if (n == 1) return {0}; if (n == 2) { if (s[0] < s[1]) { return {0, 1}; } else { return {1, 0}; } } if (n < THRESHOLD_NAIVE) { return sa_naive(s); } if (n < THRESHOLD_DOUBLING) { return sa_doubling(s); } std::vector sa(n); std::vector ls(n); for (int i = n - 2; i >= 0; i--) { ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]); } std::vector sum_l(upper + 1), sum_s(upper + 1); for (int i = 0; i < n; i++) { if (!ls[i]) { sum_s[s[i]]++; } else { sum_l[s[i] + 1]++; } } for (int i = 0; i <= upper; i++) { sum_s[i] += sum_l[i]; if (i < upper) sum_l[i + 1] += sum_s[i]; } auto induce = [&](const std::vector& lms) { std::fill(sa.begin(), sa.end(), -1); std::vector buf(upper + 1); std::copy(sum_s.begin(), sum_s.end(), buf.begin()); for (auto d : lms) { if (d == n) continue; sa[buf[s[d]]++] = d; } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); sa[buf[s[n - 1]]++] = n - 1; for (int i = 0; i < n; i++) { int v = sa[i]; if (v >= 1 && !ls[v - 1]) { sa[buf[s[v - 1]]++] = v - 1; } } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); for (int i = n - 1; i >= 0; i--) { int v = sa[i]; if (v >= 1 && ls[v - 1]) { sa[--buf[s[v - 1] + 1]] = v - 1; } } }; std::vector lms_map(n + 1, -1); int m = 0; for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms_map[i] = m++; } } std::vector lms; lms.reserve(m); for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms.push_back(i); } } induce(lms); if (m) { std::vector sorted_lms; sorted_lms.reserve(m); for (int v : sa) { if (lms_map[v] != -1) sorted_lms.push_back(v); } std::vector rec_s(m); int rec_upper = 0; rec_s[lms_map[sorted_lms[0]]] = 0; for (int i = 1; i < m; i++) { int l = sorted_lms[i - 1], r = sorted_lms[i]; int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n; int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n; bool same = true; if (end_l - l != end_r - r) { same = false; } else { while (l < end_l) { if (s[l] != s[r]) { break; } l++; r++; } if (l == n || s[l] != s[r]) same = false; } if (!same) rec_upper++; rec_s[lms_map[sorted_lms[i]]] = rec_upper; } auto rec_sa = sa_is(rec_s, rec_upper); for (int i = 0; i < m; i++) { sorted_lms[i] = lms[rec_sa[i]]; } induce(sorted_lms); } return sa; } } // namespace internal std::vector suffix_array(const std::vector& s, int upper) { assert(0 <= upper); for (int d : s) { assert(0 <= d && d <= upper); } auto sa = internal::sa_is(s, upper); return sa; } template std::vector suffix_array(const std::vector& s) { int n = int(s.size()); std::vector idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; }); std::vector s2(n); int now = 0; for (int i = 0; i < n; i++) { if (i && s[idx[i - 1]] != s[idx[i]]) now++; s2[idx[i]] = now; } return internal::sa_is(s2, now); } std::vector suffix_array(const std::string& s) { int n = int(s.size()); std::vector s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return internal::sa_is(s2, 255); } // Reference: // T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, // Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its // Applications template std::vector lcp_array(const std::vector& s, const std::vector& sa) { int n = int(s.size()); assert(n >= 1); std::vector rnk(n); for (int i = 0; i < n; i++) { rnk[sa[i]] = i; } std::vector lcp(n - 1); int h = 0; for (int i = 0; i < n; i++) { if (h > 0) h--; if (rnk[i] == 0) continue; int j = sa[rnk[i] - 1]; for (; j + h < n && i + h < n; h++) { if (s[j + h] != s[i + h]) break; } lcp[rnk[i] - 1] = h; } return lcp; } std::vector lcp_array(const std::string& s, const std::vector& sa) { int n = int(s.size()); std::vector s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return lcp_array(s2, sa); } // Reference: // D. Gusfield, // Algorithms on Strings, Trees, and Sequences: Computer Science and // Computational Biology template std::vector z_algorithm(const std::vector& s) { int n = int(s.size()); if (n == 0) return {}; std::vector z(n); z[0] = 0; for (int i = 1, j = 0; i < n; i++) { int& k = z[i]; k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]); while (i + k < n && s[k] == s[i + k]) k++; if (j + z[j] < i + z[i]) j = i; } z[0] = n; return z; } std::vector z_algorithm(const std::string& s) { int n = int(s.size()); std::vector s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return z_algorithm(s2); } } // namespace atcoder using atcoder::lcp_array; using atcoder::suffix_array; using atcoder::z_algorithm; namespace po167{ template struct segment_tree{ int _n,size; std::vector seg; int ceil_pow2(int a){ int b=1; while(a>b){ b<<=1; } return b; } void update(int k){seg[k]=op(seg[k*2],seg[k*2+1]);}; segment_tree(int n) :_n(n){ size=ceil_pow2(n); seg=std::vector(size*2,e()); } segment_tree(std::vector &p) :_n((int) p.size()){ size=ceil_pow2(_n); seg=std::vector(size*2,e()); for(int i=0;i<_n;i++) seg[i+size]=p[i]; for(int i=size-1;i>0;i--) update(i); } void set(int ind,T val){ assert(0<=ind&&ind<_n); ind+=size; seg[ind]=val; while(ind!=1){ ind>>=1; update(ind); } } void addl(int ind,T val){ set(ind,op(get(ind),val)); } void addr(int ind,T val){ set(ind,op(val,get(ind))); } T get(int ind){ assert(0<=ind&&ind<_n); return seg[ind+size]; } T query(int l,int r){ assert(0<=l&&l<=r&&r<=_n); T l_val=e(); T r_val=e(); l+=size,r+=size; while(l>=1; l>>=1; } return op(l_val,r_val); } template int max_right(int l) { return max_right(l, [](T x) { return f(x); }); } template int max_right(int l, F f) { assert(0<=l&&l<=_n); assert(f(e())); if(f(query(l,_n))) return _n; T val=e(); l+=size; while(true){ while(l%2==0) l>>=1; if(!f(op(val,seg[l]))){ while(l int min_left(int r) { return min_left(r, [](T x) { return f(x); }); } template int min_left(int r, F f) { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; T sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(seg[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(seg[r], sm))) { sm = op(seg[r], sm); r--; } } return r + 1 - size; } sm = op(seg[r], sm); } while ((r & -r) != r); return 0; } }; } using po167::segment_tree; using F= pair; F op(F a,F b){return min(a,b);} F e(){return {INF,INF};} void solve(); // oddloop int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t=1; //cin>>t; rep(i,0,t) solve(); } void solve(){ int N,Q; cin>>N>>Q; string S; cin>>S; vector L(Q),R(Q); rep(i,0,Q){ cin>>L[i]>>R[i]; L[i]--; } auto sa=suffix_array(S); auto lcp=lcp_array(S,sa); vector rev(N); rep(i,0,N) rev[sa[i]]=i; vector order(Q); rep(i,0,Q){ order[i]=i; } sort(all(order),[&](int l,int r){ return rev[L[l]] seg1(N-1),seg2(Q); rep(i,0,Q) seg2.set(i,{R[order[i]]-L[order[i]],i}); rep(i,0,N-1) seg1.set(i,{lcp[i],i+1}); vector ans(Q); ll val=0; auto f=[&](auto self,ll l1,ll r1,ll l2,ll r2,ll depth)->void{ auto med1=seg1.query(l1,r1-1); //cout<med1.first) break; seg2.set(tmp.second,e()); int a=order[tmp.second]; ans[a]=val+(r1-l1)*(R[a]-L[a]-1-depth)+rev[L[a]]-l1; } if(l1+1==r1){ val+=N-sa[l1]-depth; return; } //cout<1){ int med=(medl+medr)/2; if(med1.second<=rev[L[order[med]]]) medr=med; else medl=med; } val+=(r1-l1)*(med1.first-depth); self(self,l1,med1.second,l2,medr,med1.first); self(self,med1.second,r1,medr,r2,med1.first); }; //vec_out(rev); f(f,0,N,0,Q,0); for(auto x:ans) cout<