# これ解くのに 998244353 時間かかった! # ぼくが弱いだけで, ★3.0 …かも? # よく考えると T が大きければ何もする必要はないし, 時を戻すときも N+M-1 以上時を戻す必要もない. # そう思うと, 時間の初期値を200として, 時間を400までもつ. # -> 時間は 0 より戻れないし, 400 より進めない. でもそれでいい. # その間で, (時間, 位置) の拡張 dijkstra 法を行うとよい. # O((N+M)NM log(NM)) になる. import heapq n, m, k, t = map(int,input().split()) ikeru = [[[] for j in range(m)] for i in range(n)] for i in range(n): for j in range(m): for x, y in [(-1, 0), (1, 0), (0, 1), (0, -1)]: if 0 <= i + x < n and 0 <= j + y < m: ikeru[i][j].append((i + x, j + y)) modoru = [[(-1,-1) for j in range(m)] for i in range(n)] for i in range(k): a, b, c, d = map(int,input().split()) a -= 1 b -= 1 modoru[a][b] = (c, d) tmax = 401 d = [10 ** 18] * n * m * tmax d[200] = 0 pq = [(-d[200], 200)] r1 = m * tmax while pq: tmp, nowv = heapq.heappop(pq) fnv = nowv nowt = nowv % tmax nowv //= tmax b = nowv % m a = nowv // m tmp = -tmp if tmp > d[fnv]: continue for x, y in ikeru[a][b]: dist = tmp targ = x*r1 + y*tmax + min(nowt+1, 400) if dist < d[targ]: d[targ] = dist heapq.heappush(pq, (-dist, targ)) if modoru[a][b][0] == -1: continue c, dd = modoru[a][b] dist = tmp + dd targ = a*r1 + b*tmax + max(0,nowt-c) if dist < d[targ]: d[targ] = dist heapq.heappush(pq, (-dist, targ)) ans = 10 ** 18 for ts in range(401): if ts - 200 > t: continue ans = min(ans, d[(n-1)*r1 + (m-1)*tmax + ts]) if ans == 10 ** 18: print(-1) else: print(ans)