# これ解くのに 998244353 時間かかった! # ぼくが弱いだけで, ★3.0 …かも? # よく考えると T が大きければ何もする必要はないし, 時を戻すときも N+M-1 以上時を戻す必要もない. # そう思うと, 時間の初期値を 200 として, 時間を 600 までもつ. # -> 時間は 0 より戻れないし, 600 より進めない. でもそれでいい. # その間で, (時間, 位置) の拡張 dijkstra 法を行うとよい. # O((N+M)NM log(NM)) になる. import heapq n, m, k, t = map(int,input().split()) modoru = [[(-1,-1) for j in range(m)] for i in range(n)] for i in range(k): a, b, c, d = map(int,input().split()) a -= 1 b -= 1 modoru[a][b] = (c, d) tmax = 601 d = [10 ** 18] * n * m * tmax d[200] = 0 pq = [(-d[200], 200)] r1 = m * tmax while pq: tmp, nowv = heapq.heappop(pq) fnv = nowv nowt = nowv % tmax nowv //= tmax b = nowv % m a = nowv // m tmp = -tmp if tmp > d[fnv]: continue for xx, yy in [(-1, 0), (1, 0), (0, 1), (0, -1)]: x = a + xx y = b + yy if 0 <= x < n and 0 <= y < m: dist = tmp targ = x*r1 + y*tmax + min(nowt+1, tmax-1) if dist < d[targ]: d[targ] = dist heapq.heappush(pq, (-dist, targ)) if modoru[a][b][0] == -1: continue c, dd = modoru[a][b] dist = tmp + dd targ = a*r1 + b*tmax + max(0, nowt-c+1) if dist < d[targ]: d[targ] = dist heapq.heappush(pq, (-dist, targ)) ans = 10 ** 18 for ts in range(tmax): if ts - 200 > t: continue ans = min(ans, d[(n-1)*r1 + (m-1)*tmax + ts]) if ans == 10 ** 18: print(-1) else: print(ans)