#include using namespace std ; #define fast_io ios::sync_with_stdio(false); cin.tie(nullptr); #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") typedef long long ll ; typedef long double ld ; #define chmin(a,b) a = min(a,b) #define chmax(a,b) a = max(a,b) #define bit_count(x) __builtin_popcountll(x) #define leading_zero_count(x) __builtin_clz(x) #define trailing_zero_count(x) __builtin_ctz(x) #define gcd(a,b) __gcd(a,b) #define lcm(a,b) a / gcd(a,b) * b #define rep(i,n) for(int i = 0 ; i < n ; i++) #define rrep(i,a,b) for(int i = a ; i < b ; i++) #define repi(it,S) for(auto it = S.begin() ; it != S.end() ; it++) #define pt(a) cout << a << endl #define debug(a) cout << #a << " " << a << endl #define all(a) a.begin(), a.end() #define endl "\n" #define v1(n,a) vector(n,a) #define v2(n,m,a) vector>(n,v1(m,a)) #define v3(n,m,k,a) vector>>(n,v2(m,k,a)) #define v4(n,m,k,l,a) vector>>>(n,v3(m,k,l,a)) templateistream &operator>>(istream&is,pair&p){is>>p.first>>p.second;return is;} templateostream &operator<<(ostream&os,const pair&p){os<istream &operator>>(istream&is,vector&v){for(T &in:v){is>>in;}return is;} templateostream &operator<<(ostream&os,const vector&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;} templateistream &operator>>(istream&is,vector>&v){for(T &in:v){is>>in;}return is;} templateostream &operator<<(ostream&os,const vector>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?"\n":"");}return os;} templateostream &operator<<(ostream&os,const set&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;} const int mod = 1000000007; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; struct Eratosthenes{ private : int n ; vector factor ; // factor[i]: i を割ることのできる素数 vector prime ; // 素数 vector isprime; // 素数判定 vector mobius; // メビウス関数 void build(){ for(int i = 2 ; i < n ; ++i){ if(factor[i] != -1) continue ; prime.push_back(i) ; isprime[i] = true ; for(int j = i ; j < n ; j += i) { factor[j] = i ; if((j / i) % i == 0) mobius[j] = 0; else mobius[j] = -mobius[j]; } } } void init_(int n_){ n = max(n_,303030) ; factor.resize(n,-1) ; isprime.resize(n,false) ; mobius.resize(n,1); build() ; } // 素因数分解 20 -> { (5,1), (2,2) } vector> prime_factorization_(int k){ vector> res ; while(k != 1){ int ex = 0 ; int d = factor[k] ; while(k % d == 0){ k /= d ; ex++ ; } res.push_back(pair(d,ex)) ; } return res ; } // 素因数分解の素因数のみ 20 -> { 5, 2 } vector prime_factor_(int k){ vector res ; while(k != 1){ int ex = 0 ; int d = factor[k] ; while(k % d == 0){ k /= d ; ex++ ; } res.push_back(d) ; } return res ; } // オイラーのファイ関数 int get_euler_phi_(int k) { int euler = k ; while(k != 1){ int d = factor[k] ; while(k % d == 0) k /= d ; euler -= euler / d ; } return euler ; } // 高速ゼータ変換 template vector zeta_transform_(vector f){ int n = f.size(); for(int i = 2 ; i < n ; i++){ if(!isprime[i]) continue; for(int j = (n - 1) / i ; j > 0 ; --j){ f[j] += f[j * i]; } } return f; } // 高速メビウス変換 template vector mobius_transform_(vector F){ int n = F.size(); for(int i = 2 ; i < n ; ++i){ if(!isprime[i]) continue; for(int j = 1 ; j * i < n ; ++j){ F[j] -= F[j * i]; } } return F; } template vector gcd_convolution_(vector f, vector g){ int n = max((int)f.size(), (int)g.size()); vector F = zeta_transform_(f); vector G = zeta_transform_(g); vector H(n); for(int i = 1 ; i < min((int)F.size(), (int)G.size()) ; ++i) H[i] = F[i] * G[i]; return mobius_transform_(H); } public : Eratosthenes(){} Eratosthenes(int n_){ init_(n_); } void init(int n_) { init_(n_); } vector> prime_factorization(int k) { return prime_factorization_(k); } vector prime_factor(int k) { return prime_factor_(k); } int get_euler_phi(int k) { return get_euler_phi_(k); } int get_mobius(int k) { return mobius[k]; } vector get_prime() { return prime ; } bool is_prime(int i) { return isprime[i] ; } template vector zeta_transform(vector f) { return zeta_transform_(f); } template vector mobius_transform(vector F) { return mobius_transform_(F); } template vector gcd_convolution(vector f, vector g) { return gcd_convolution_(f, g); } }; ll powmod(ll x, ll n, ll mod){ ll res = 1; while(n > 0){ if(n & 1) (res *= x) %= mod; (x *= x) %= mod; n >>= 1; } return res; } void solve(){ int n, k, N; cin >> n >> k; Eratosthenes ets(1010101); vector P(n+10,0); P[n] = 1; int cnt = 0; while(cnt < k && cnt < 50){ vector Q(n+10,0); rep(i,n+10){ if(P[i] == 0) continue; auto V = ets.prime_factorization(i); for(auto[x,ex] : V) { (Q[x+1] += ex * P[i]) %= mod - 1; } } P = Q; cnt++; } k -= cnt; if(k == 0){ modint res = 1; rep(i,n+10){ if(P[i] == 0) continue; res *= powmod(i,P[i],mod); } pt(res); return; } ll c = k / 2; ll two = powmod(2,c,mod-1); ll thr = powmod(2,c,mod-1); (two *= P[4]) %= mod - 1; (thr *= P[3]) %= mod - 1; if(k % 2 == 1){ swap(two,thr); (thr *= 2) %= mod - 1; } modint res = powmod(4,two,mod) * powmod(3,thr,mod); cout << res << endl; } int main(){ fast_io // int t; // cin >> t; // rep(i,t) solve(); solve(); }