#if !__INCLUDE_LEVEL__ #include __FILE__ // エラトステネスの篩 struct Eratosthenes { // テーブル vector isprime; // 整数 i を割り切る最小の素数 vector minfactor; // コンストラクタで篩を回す Eratosthenes(int N) : isprime(N+1, true), minfactor(N+1, -1) { // 1 は予めふるい落としておく isprime[1] = false; minfactor[1] = 1; // 篩 for (int p = 2; p <= N; ++p) { // すでに合成数であるものはスキップする if (!isprime[p]) continue; // p についての情報更新 minfactor[p] = p; // p 以外の p の倍数から素数ラベルを剥奪 for (int q = p * 2; q <= N; q += p) { // q は合成数なのでふるい落とす isprime[q] = false; // q は p で割り切れる旨を更新 if (minfactor[q] == -1) minfactor[q] = p; } } } // 高速素因数分解 // pair (素因子, 指数) の vector を返す vector> factorize(int n) { vector> res; while (n > 1) { int p = minfactor[n]; int exp = 0; // n で割り切れる限り割る while (minfactor[n] == p) { n /= p; ++exp; } res.emplace_back(p, exp); } return res; } vector divisors(int n) { vector res({1}); // n を素因数分解 (メンバ関数使用) auto pf = factorize(n); // 約数列挙 for (auto p : pf) { int s = (int)res.size(); for (int i = 0; i < s; ++i) { int v = 1; for (int j = 0; j < p.second; ++j) { v *= p.first; res.push_back(res[i] * v); } } } sort(res.begin(),res.end()); return res; } }; #define mat vector> const ll MOD =1000000006; mat mat_mul(mat &b, mat &a) { mat res(a.size(), vector(b[0].size())); for (int i = 0; i < a.size(); i++) { for (int j = 0; j < b[0].size(); j++) { for (int k = 0; k < b.size(); k++) { (res[i][j] += a[i][k] * b[k][j]) %= MOD; } } } //答えを求める処理の場合+=MODを導入 if(a.size()==1){ for (int j = 0; j < b[0].size(); j++) { if(res[0][j]<0)res[0][j]+=MOD; } } return res; } /// 行列累乗 mat mat_pow(mat a, long long n) { mat res(a.size(), vector(a.size())); // 単位行列で初期化 for (int i = 0; i < a.size(); i++)res[i][i] = 1; // 繰り返し二乗法 while (n > 0) { if (n & 1) res = mat_mul(res,a); a = mat_mul(a, a); n >>= 1; } return res; } //MODのデフォは1000000007 //遷移表AのK回遷移後 //mat L=mat_pow(A,K);遷移行列 //mat R(1,vl(N,1)); //mat Ans(1,vl(N,0)); //Ans = mat_mul(L,R); //書きがちの遷移行列、縦と横がプログラム上だと逆なので注意 //行列に負の値を含むと答えが負になるので、mat_mulに+=MODする処理導入 int main() { //30回くらいやると全て2に収束しないか? ll N,K;cin >> N >> K; Eratosthenes Era(N+10); mint::set_mod(1000000006); vector Num(40,vector(N+10,0)); vector> Pri = Era.factorize(N); fore(p,Pri){ Num[0][p.first]+=p.second; } rep(k,min(K,30)){ rep(n,N+5){ if(1<=Num[k][n].val()){ vector> P =Era.factorize(n+1); fore(p,P){ Num[k+1][p.first]+=p.second*Num[k][n]; } } } } if(30 #include using namespace std; using namespace atcoder; #define rep(i, n) for(long long int i = 0; i < n; i++) #define rrep(i, n) for(long long int i = n-1; i >= 0; i--) #define range(i, m, n) for(long long int i = m; i < n; i++) #define fore(i,a) for(auto &i:a) #define all(v) v.begin(), v.end() #define rall(v) v.rbegin(), v.rend() #define Sum(v) accumulate(all(v),0LL) #define minv(v) *min_element(all(v)) #define maxv(v) *max_element(all(v)) typedef long long ll; typedef vector vl; typedef vector> vvl; const ll INF = 1e16; const ll MOD1 = 1000000007; const ll MOD2 = 998244353; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } ll SN(char s){return ll(s-'0');} ll SN(string s){return stoll(s);} int alpN(char s){return int(s-'a');} int AlpN(char s){return int(s-'A');} int Nalp(int n){return char(n+97);} int NAlp(int n){return char(n+65);} using mint = modint; using mint1 = modint1000000007; using mint2 = modint998244353; using pll = pair; template ostream &operator<<(ostream &o,const vector&v){for(int i=0;i<(int)v.size();i++)o<<(i>0?" ":"")< bool contain(const std::string& s, const T& v) { return s.find(v) != std::string::npos; } ll max(int x,ll y){return max((ll)x,y);} ll max(ll x,int y){return max(x,(ll)y);} ll min(int x,ll y){return min((ll)x,y);} ll min(ll x,int y){return min(x,(ll)y);} template struct edge { int src, to; T cost; edge(int to, T cost) : src(-1), to(to), cost(cost) {} edge(int src, int to, T cost) : src(src), to(to), cost(cost) {} edge& operator=(const int& x) { to = x; return *this; } operator int() const { return to; } }; template using Edges = vector >; template using WeightedGraph = vector >; using UnWeightedGraph = vector >; template using Matrix = vector >; //unorderd_mapの拡張…https://qiita.com/hamamu/items/4d081751b69aa3bb3557 template size_t HashCombine(const size_t seed,const T &v){ return seed^(std::hash()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); } /* pair用 */ template struct std::hash>{ size_t operator()(const std::pair &keyval) const noexcept { return HashCombine(std::hash()(keyval.first), keyval.second); } }; /* vector用 */ template struct std::hash>{ size_t operator()(const std::vector &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } }; /* tuple用 */ template struct HashTupleCore{ template size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore()(keyval); return HashCombine(s,std::get(keyval)); } }; template <> struct HashTupleCore<0>{ template size_t operator()(const Tuple &keyval) const noexcept{ return 0; } }; template struct std::hash>{ size_t operator()(const tuple &keyval) const noexcept { return HashTupleCore>::value>()(keyval); } }; ll ceil(ll a, ll b){ return (a + b - 1) / b; } struct string_converter { char start = 0; char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' : isdigit(c) ? '0' : 0); } int convert(const char &c) { if(!start) start = type(c); return c - start; } int convert(const char &c, const string &chars) { return chars.find(c); } template auto convert(const T &v) { vector ret; ret.reserve(v.size()); for(auto &&e : v) ret.emplace_back(convert(e)); return ret; } template auto convert(const T &v, const string &chars) { vector ret; ret.reserve(v.size()); for(auto &&e : v) ret.emplace_back(convert(e, chars)); return ret; } int operator()(const char &v, char s = 0) { start = s; return convert(v); } int operator()(const char &v, const string &chars) { return convert(v, chars); } template auto operator()(const T &v, char s = 0) { start = s; return convert(v); } template auto operator()(const T &v, const string &chars) { return convert(v, chars); } } toint; #endif