#include #include #define rep(i,b) for(int i=0;i=0;i--) #define rep1(i,b) for(int i=1;i=x;i--) #define fore(i,a) for(auto& i:a) #define rng(x) (x).begin(), (x).end() #define rrng(x) (x).rbegin(), (x).rend() #define sz(x) ((int)(x).size()) #define pb push_back #define fi first #define se second #define pcnt __builtin_popcountll using namespace std; using namespace atcoder; using ll = long long; using ld = long double; template using mpq = priority_queue, greater>; template bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (b ll sumv(const vector&a){ll res(0);for(auto&&x:a)res+=x;return res;} bool yn(bool a) { if(a) {cout << "Yes" << endl; return true;} else {cout << "No" << endl; return false;}} #define retval(x) {cout << #x << endl; return;} #define cout2(x,y) cout << x << " " << y << endl; #define coutp(p) cout << p.fi << " " << p.se << endl; #define out cout << ans << endl; #define outd cout << fixed << setprecision(20) << ans << endl; #define outm cout << ans.val() << endl; #define outv fore(yans , ans) cout << yans << "\n"; #define outdv fore(yans , ans) cout << yans.val() << "\n"; #define coutv(v) {fore(vy , v) {cout << vy << " ";} cout << endl;} #define coutv2(v) fore(vy , v) cout << vy << "\n"; #define coutvm(v) {fore(vy , v) {cout << vy.val() << " ";} cout << endl;} #define coutvm2(v) fore(vy , v) cout << vy.val() << "\n"; using pll = pair;using pil = pair;using pli = pair;using pii = pair;using pdd = pair; using vi = vector;using vd = vector;using vl = vector;using vs = vector;using vb = vector; using vpii = vector;using vpli = vector;using vpll = vector;using vpil = vector; using vvi = vector>;using vvl = vector>;using vvs = vector>;using vvb = vector>; using vvpii = vector>;using vvpli = vector>;using vvpll = vector;using vvpil = vector; // using mint = modint998244353; using mint = modint1000000007; using mint0 = dynamic_modint<0>; using vm = vector; using vvm = vector>; vector dx={1,0,-1,0,1,1,-1,-1},dy={0,1,0,-1,1,-1,1,-1}; ll gcd(ll a, ll b) { return a?gcd(b%a,a):b;} ll lcm(ll a, ll b) { return a/gcd(a,b)*b;} #define yes {cout <<"Yes"< f, primes; Sieve(int n=1):n(n), f(n+1) { //初期化、f[x] = (xの最も小さい素因数) f[0] = f[1] = -1; for (ll i = 2; i <= n; ++i) { if (f[i]) continue; primes.push_back(i); f[i] = i; for (ll j = i*i; j <= n; j += i) { if (!f[j]) f[j] = i; } } } bool isPrime(int x) { return f[x] == x;} //素数判定 vector factorList(int x) {//素因数分解、xの素因数を小さいものから個数分列挙 vector res; while (x != 1) { res.push_back(f[x]); x /= f[x]; } return res; } vector factor(int x) {//素因数分解その2、xの素因数を小さいものから(素因数、個数)の形で列挙 vector fl = factorList(x); if (fl.size() == 0) return {}; vector res(1, pii(fl[0], 0)); for (int p : fl) { if (res.back().first == p) { res.back().second++; } else { res.emplace_back(p, 1); } } return res; } vector factor(ll x) {//素因数分解その2-2、xがllの場合 vector res; for (int p : primes) { int y = 0; while (x%p == 0) x /= p, ++y; if (y != 0) res.emplace_back(p,y); } if (x != 1) res.emplace_back(x,1); return res; } ll totient(ll x){ ll den = 1,num = 1; if (x<=n){ vpii v = factor((int)x); fore(y , v){ den *= y.fi; num *= (y.fi-1); } }else{ vpli v = factor(x); fore(y , v){ den *= y.fi; num *= (y.fi-1); } } assert(x%den==0); ll ret = x/den*num; return ret; } ///////////////// 以下、約数/倍数 ゼータ・メビウス変換 //////////////// // 以下、約数変換 template void div_zeta_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = 1; i * p <= n; ++i) a[i * p] += a[i]; } } template void div_mobius_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = n / p; i > 0; --i) a[i * p] -= a[i]; } } template void div_zeta_trans(map &a) { for (auto p = a.rbegin(); p != a.rend(); p++) { fore(y, a) { if (p->fi == y.fi) break; if (p->fi % y.fi == 0) p->se += y.se; } } } template void div_mobius_trans(map &a) { fore(y, a) { for (auto p = a.rbegin(); p != a.rend(); p++) { if (y.fi == p->fi) break; if (p->fi % y.fi == 0) p->se -= y.se; } } } // 以下、倍数変換 template void mul_zeta_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = n / p; i > 0; --i) a[i] += a[i * p]; } } template void mul_mobius_trans(vector &a) { int n = sz(a)-1; fore(p, primes) { if (p > n) break; for (int i = 1; i * p <= n; ++i) a[i] -= a[i * p]; } } template void mul_zeta_trans(map &a) { fore(y, a) { for (auto p = a.rbegin(); p != a.rend(); p++) { if (y.fi == p->fi) break; if (p->fi % y.fi == 0) y.se += p->se; } } } template void mul_mobius_trans(map &a) { for (auto p1 = a.rbegin(); p1 != a.rend(); p1++) { for (auto p2 = a.rbegin(); p2 != p1; p2++) { if (p2->fi % p1->fi == 0) p1->se += p2->se; } } } } sieve(1e6); // エラストテネスの篩 // .primes : n以下の素数を小さい順で格納しているベクトル。 // .isPrime(int x) : xの素数判定。boolで返す // .factorList(int x) : xの素因数分解。xの素因数を小さいものから個数分列挙。vectorで返す。 // .factor(int x) : 素因数分解その2、xの素因数を小さいものからpair{素因数、個数}の形で列挙。vectorで返す。xはllでもok。 // 宣言方法 : n=1e6(デフォルト)で初期化している。 // 注意点 : factorList、factorは呼び出し毎に約数個分の計算時間がかかってしまうため、何度も呼び出すときは予め別の配列に格納しておくこと。 // totient(ll x) : オイラーのトーシェント関数を返す // 約数/倍数 ゼータ・メビウス変換 // f = Σg : g → f をゼータ変換、f → g をメビウス変換 // mapはI が idx T が 関数値 void solve(){ ll n,k; cin>>n>>k; vpii vt = sieve.factor((int)n); mint0::set_mod(1000000006); using vpim0 = vector>; vpim0 v; fore(y , vt){ v.pb({y.fi,mint0(y.se)}); } auto f = [&](vpim0 v)->vpim0{ vpim0 ret; unordered_map mp; fore(y , v){ vpii tmp = sieve.factor(y.fi+1); fore(yy , tmp){ mp[yy.fi] += mint0(yy.se)*y.se; } } fore(y , mp){ ret.pb(y); } return ret; }; int mx = 5000; while(k && mx){ k--; mx--; v = f(v); } if (k==0){ mint ans = 1; fore(y,v){ ans *= mint(y.fi).pow(y.se.val()); } outm; return; } assert(sz(v)<=2); if (k%2==1) v = f(v); mint ans = 1; fore(y,v){ mint0 p = y.se; p *= mint0(2).pow(k/2); ans *= mint(y.fi).pow(p.val()); } outm; return; } int main(){ ios::sync_with_stdio(false); cin.tie(0); int t = 1; //cin>>t; rep(i,t){ solve(); } return 0; }