/** * date : 2023-07-07 21:39:39 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template using V = vector; template using VV = vector>; using vi = vector; using vl = vector; using vd = V; using vs = V; using vvi = vector>; using vvl = vector>; template struct P : pair { template P(Args... args) : pair(args...) {} using pair::first; using pair::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P; using pi = P; using vp = V; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template int sz(const T &t) { return t.size(); } template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template inline T Max(const vector &v) { return *max_element(begin(v), end(v)); } template inline T Min(const vector &v) { return *min_element(begin(v), end(v)); } template inline long long Sum(const vector &v) { return accumulate(begin(v), end(v), 0LL); } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template pair mkp(const T &t, const U &u) { return make_pair(t, u); } template vector mkrui(const vector &v, bool rev = false) { vector ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector mkinv(vector &v) { int max_val = *max_element(begin(v), end(v)); vector inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector mkiota(int n) { vector ret(n); iota(begin(ret), end(ret), 0); return ret; } template T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template bool nxp(vector &v) { return next_permutation(begin(v), end(v)); } // i 要素目 : [0, a[i]) vector> product(const vector &a) { vector> ret; vector v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } template using minpq = priority_queue, greater>; } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template inline int gbit(const T &a, int i) { return (a >> i) & 1; } template inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // template struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template using Edges = vector>; template using WeightedGraph = vector>; using UnweightedGraph = vector>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template WeightedGraph wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].emplace_back(x, y, c); if (!is_directed) g[y].emplace_back(y, x, c); } return g; } // Input of Edges template Edges esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) { Edges es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template vector> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector> d(N, vector(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } /** * @brief グラフテンプレート * @docs docs/graph/graph-template.md */ template struct HeavyLightDecomposition { private: void dfs_sz(int cur) { size[cur] = 1; for (auto& dst : g[cur]) { if (dst == par[cur]) { if (g[cur].size() >= 2 && int(dst) == int(g[cur][0])) swap(g[cur][0], g[cur][1]); else continue; } depth[dst] = depth[cur] + 1; par[dst] = cur; dfs_sz(dst); size[cur] += size[dst]; if (size[dst] > size[g[cur][0]]) { swap(dst, g[cur][0]); } } } void dfs_hld(int cur) { down[cur] = id++; for (auto dst : g[cur]) { if (dst == par[cur]) continue; nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst)); dfs_hld(dst); } up[cur] = id; } // [u, v) vector> ascend(int u, int v) const { vector> res; while (nxt[u] != nxt[v]) { res.emplace_back(down[u], down[nxt[u]]); u = par[nxt[u]]; } if (u != v) res.emplace_back(down[u], down[v] + 1); return res; } // (u, v] vector> descend(int u, int v) const { if (u == v) return {}; if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}}; auto res = descend(u, par[nxt[v]]); res.emplace_back(down[nxt[v]], down[v]); return res; } public: G& g; int id; vector size, depth, down, up, nxt, par; HeavyLightDecomposition(G& _g, int root = 0) : g(_g), id(0), size(g.size(), 0), depth(g.size(), 0), down(g.size(), -1), up(g.size(), -1), nxt(g.size(), root), par(g.size(), root) { dfs_sz(root); dfs_hld(root); } void build(int root) { dfs_sz(root); dfs_hld(root); } pair idx(int i) const { return make_pair(down[i], up[i]); } template void path_query(int u, int v, bool vertex, const F& f) { int l = lca(u, v); for (auto&& [a, b] : ascend(u, l)) { int s = a + 1, t = b; s > t ? f(t, s) : f(s, t); } if (vertex) f(down[l], down[l] + 1); for (auto&& [a, b] : descend(l, v)) { int s = a, t = b + 1; s > t ? f(t, s) : f(s, t); } } template void path_noncommutative_query(int u, int v, bool vertex, const F& f) { int l = lca(u, v); for (auto&& [a, b] : ascend(u, l)) f(a + 1, b); if (vertex) f(down[l], down[l] + 1); for (auto&& [a, b] : descend(l, v)) f(a, b + 1); } template void subtree_query(int u, bool vertex, const F& f) { f(down[u] + int(!vertex), up[u]); } int lca(int a, int b) { while (nxt[a] != nxt[b]) { if (down[a] < down[b]) swap(a, b); a = par[nxt[a]]; } return depth[a] < depth[b] ? a : b; } int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; } }; /** * @brief Heavy Light Decomposition(重軽分解) * @docs docs/tree/heavy-light-decomposition.md */ // // 一般のグラフのstからの距離!!!! // unvisited nodes : d = -1 vector Depth(const UnweightedGraph &g, int start = 0) { int n = g.size(); vector ds(n, -1); ds[start] = 0; queue q; q.push(start); while (!q.empty()) { int c = q.front(); q.pop(); int dc = ds[c]; for (auto &d : g[c]) { if (ds[d] == -1) { ds[d] = dc + 1; q.push(d); } } } return ds; } // Depth of Rooted Weighted Tree // unvisited nodes : d = -1 template vector Depth(const WeightedGraph &g, int start = 0) { vector d(g.size(), -1); auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void { d[cur] = val; for (auto &dst : g[cur]) { if (dst == par) continue; rec(rec, dst, val + dst.cost, cur); } }; dfs(dfs, start, 0); return d; } // Diameter of Tree // return value : { {u, v}, length } pair, int> Diameter(const UnweightedGraph &g) { auto d = Depth(g, 0); int u = max_element(begin(d), end(d)) - begin(d); d = Depth(g, u); int v = max_element(begin(d), end(d)) - begin(d); return make_pair(make_pair(u, v), d[v]); } // Diameter of Weighted Tree // return value : { {u, v}, length } template pair, T> Diameter(const WeightedGraph &g) { auto d = Depth(g, 0); int u = max_element(begin(d), end(d)) - begin(d); d = Depth(g, u); int v = max_element(begin(d), end(d)) - begin(d); return make_pair(make_pair(u, v), d[v]); } // nodes on the path u-v ( O(N) ) template vector Path(G &g, int u, int v) { vector ret; int end = 0; auto dfs = [&](auto rec, int cur, int par = -1) -> void { ret.push_back(cur); if (cur == v) { end = 1; return; } for (int dst : g[cur]) { if (dst == par) continue; rec(rec, dst, cur); if (end) return; } if (end) return; ret.pop_back(); }; dfs(dfs, u); return ret; } /** * @brief グラフユーティリティ * @docs docs/graph/graph-utility.md */ // template struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; using namespace std; // コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」 // を入れると倍速くらいになる // mod を超えて前計算して 0 割りを踏むバグは対策済み template struct Binomial { vector f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); if (MAX > 0) extend(MAX + 1); } void extend(int m = -1) { int n = f.size(); if (m == -1) m = n * 2; m = min(m, T::get_mod()); if (n >= m) return; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template T multinomial(const vector& r) { static_assert(is_integral::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template T operator()(const vector& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector; using vvm = vector; Binomial C; using namespace Nyaan; void q() { inl(N); auto g = graph(N); vl A(N); in(A); HeavyLightDecomposition hld{g}; mint ans = 0; rep(b, 30) { vl B(N); rep(i, N) B[i] = gbit(A[i], b); auto dfs = [&](auto rc, int c, int p) -> vm { vm dp(2); dp[B[c]] = 1; each(d, g[c]) { if (d == p) continue; vm ch = rc(rc, d, c); vm nx(2); rep(i, 2) nx[i] += dp[i] * ch[1]; rep(i, 2) rep(j, 2) nx[i ^ j] += dp[i] * ch[j]; dp = nx; } trc(c, dp); return dp; }; auto dp = dfs(dfs, 0, -1); ans += dp[1] * PW(b); } out(ans); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }