#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; namespace geometry { using Integer = long long; int sgn(const Integer x) { return x > 0 ? 1 : (x < 0 ? -1 : 0); } struct Point { Integer x, y; explicit Point(const Integer x = 0, const Integer y = 0) : x(x), y(y) {} Integer norm() const { return x * x + y * y; } Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } Point& operator*=(const Integer k) { x *= k; y *= k; return *this; } Point& operator/=(const Integer k) { x /= k; y /= k; return *this; } std::strong_ordering operator<=>(const Point& p) const { const int x_sgn = sgn(p.x - x); if (x_sgn == 0) return 0 <=> sgn(p.y - y); return x_sgn == 1 ? std::strong_ordering::less : std::strong_ordering::greater; } Point operator+() const { return *this; } Point operator-() const { return Point(-x, -y); } Point operator+(const Point& p) const { return Point(*this) += p; } Point operator-(const Point& p) const { return Point(*this) -= p; } Point operator*(const Integer k) const { return Point(*this) *= k; } Point operator/(const Integer k) const { return Point(*this) /= k; } friend std::ostream& operator<<(std::ostream& os, const Point& p) { return os << '(' << p.x << ", " << p.y << ')'; } friend std::istream& operator>>(std::istream& is, Point& p) { Integer x, y; is >> x >> y; p = Point(x, y); return is; } }; struct Segment { Point s, t; explicit Segment(const Point& s = Point(0, 0), const Point& t = Point(0, 0)) : s(s), t(t) {} }; struct Line : Segment { using Segment::Segment; }; struct Circle { Point p; Integer r; explicit Circle(const Point& p = Point(0, 0), const Integer r = 0) : p(p), r(r) {} }; Integer cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; } Integer dot(const Point& a, const Point& b) { return a.x * b.x + a.y * b.y; } int ccw(const Point& a, const Point& b, const Point& c) { const Point ab = b - a, ac = c - a; const int sign = sgn(cross(ab, ac)); if (sign == 0) { if (sgn(dot(ab, ac)) == -1) return 2; if (sgn(ac.norm() - ab.norm()) == 1) return -2; } return sign; } Integer closest_pair(std::vector ps) { const int n = ps.size(); assert(n >= 2); std::sort(ps.begin(), ps.end()); const auto f = [&ps](auto f, const int left, const int right) -> Integer { const int mid = std::midpoint(left, right); Integer x_mid = ps[mid].x, d = std::numeric_limits::max(); if (left + 1 < mid) d = std::min(d, f(f, left, mid)); if (mid + 1 < right) d = std::min(d, f(f, mid, right)); std::inplace_merge(std::next(ps.begin(), left), std::next(ps.begin(), mid), std::next(ps.begin(), right), [](const Point& a, const Point& b) -> bool { return sgn(b.y - a.y) == 1; }); std::vector tmp; for (int i = left; i < right; ++i) { if (sgn((ps[i].x - x_mid) * (ps[i].x - x_mid) - d) == 1) continue; for (int j = std::ssize(tmp) - 1; j >= 0; --j) { const Point v = ps[i] - tmp[j]; if (sgn(v.y * v.y - d) == 1) break; d = std::min(d, v.norm()); } tmp.emplace_back(ps[i]); } return d; }; return f(f, 0, n); } bool is_parallel(const Segment& a, const Segment& b) { return sgn(cross(a.t - a.s, b.t - b.s)) == 0; } bool is_orthogonal(const Segment& a, const Segment& b) { return sgn(dot(a.t - a.s, b.t - b.s)) == 0; } int common_tangent_num(const Circle&, const Circle&); bool has_intersected(const Segment& a, const Point& b) { return ccw(a.s, a.t, b) == 0; } bool has_intersected(const Segment& a, const Segment& b) { return ccw(a.s, a.t, b.s) * ccw(a.s, a.t, b.t) <= 0 && ccw(b.s, b.t, a.s) * ccw(b.s, b.t, a.t) <= 0; } bool has_intersected(const Line& a, const Point& b) { const int c = ccw(a.s, a.t, b); return c != 1 && c != -1; } bool has_intersected(const Line& a, const Segment& b) { return ccw(a.s, a.t, b.s) * ccw(a.s, a.t, b.t) != 1; } bool has_intersected(const Line& a, const Line& b) { return sgn(cross(a.t - a.s, b.t - b.s)) != 0 || sgn(cross(a.t - a.s, b.s - a.s)) == 0; } bool has_intersected(const Circle& a, const Point& b) { return (a.p - b).norm() == a.r * a.r; } bool has_intersected(const Circle& a, const Circle& b) { const int num = common_tangent_num(a, b); return 1 <= num && num <= 3; } int common_tangent_num(const Circle& a, const Circle& b) { const Integer dist = (a.p - b.p).norm(); int sign = sgn((a.r + b.r) * (a.r + b.r) - dist); if (sign == -1) return 4; if (sign == 0) return 3; sign = sgn((b.r - a.r) * (b.r - a.r) - dist); if (sign == -1) return 2; if (sign == 0) return 1; return 0; } using Polygon = std::vector; Integer area(Polygon a) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); Integer res = 0; for (int i = 0; i < n; ++i) { res += cross(a[i], a[i + 1]); } // return res / 2; return res; } int contains(Polygon a, const Point &b) { const int n = a.size(); a.resize(n + 1); a.back() = a.front(); bool is_in = false; for (int i = 0; i < n; ++i) { Point p = a[i] - b, q = a[i + 1] - b; if (sgn(q.y - p.y) == -1) std::swap(p, q); const int sign = sgn(cross(p, q)); if (sign == 1 && sgn(p.y) != 1 && sgn(q.y) == 1) is_in = !is_in; if (sign == 0 && sgn(dot(p, q)) != 1) return 1; } return is_in ? 2 : 0; } bool is_convex(Polygon a) { const int n = a.size(); a.resize(n + 2); a[n] = a[0]; a[n + 1] = a[1]; for (int i = 1; i <= n; ++i) { if (ccw(a[i - 1], a[i], a[i + 1]) == -1) return false; } return true; } template Polygon monotone_chain(std::vector ps) { const int n = ps.size(); std::sort(ps.begin(), ps.end()); Polygon convex_hull(n << 1); int idx = 0; for (int i = 0; i < n; convex_hull[idx++] = ps[i++]) { while (idx >= 2 && sgn(cross(convex_hull[idx - 1] - convex_hull[idx - 2], ps[i] - convex_hull[idx - 1])) < IS_TIGHT) { --idx; } } for (int i = n - 2, border = idx + 1; i >= 0; convex_hull[idx++] = ps[i--]) { while (idx >= border && sgn(cross(convex_hull[idx - 1] - convex_hull[idx - 2], ps[i] - convex_hull[idx - 1])) < IS_TIGHT) { --idx; } } convex_hull.resize(idx - 1); return convex_hull; } std::pair rotating_calipers(Polygon a) { const int n = a.size(); if (n <= 2) [[unlikely]] { assert(n == 2); return {a[0], a[1]}; } a.resize(n + 1); a.back() = a.front(); int high = 0, low = 0; for (int i = 1; i < n; ++i) { if (a[i].y > a[high].y) high = i; if (a[i].y < a[low].y) low = i; } Integer max_norm = (a[high] - a[low]).norm(); int i = high, j = low, argmax_i = i, argmax_j = j; do { int* i_or_j = &(sgn(cross(a[i + 1] - a[i], a[j + 1] - a[j])) != -1 ? j : i); if (++(*i_or_j) == n) *i_or_j = 0; const Integer tmp = (a[j] - a[i]).norm(); if (sgn(tmp - max_norm) == 1) { max_norm = tmp; argmax_i = i; argmax_j = j; } } while (i != high || j != low); return {a[argmax_i], a[argmax_j]}; } } // namespace geometry template struct WarshallFloyd { std::vector> graph, dist; WarshallFloyd(const std::vector>& graph, const T inf) : graph(graph), dist(graph), inf(inf), n(graph.size()), internal(n, std::vector(n, -1)) { for (int k = 0; k < n; ++k) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; internal[i][j] = k; } } } } } void add(const int src, const int dst, const T cost) { srcs.emplace_back(src); dsts.emplace_back(dst); costs.emplace_back(cost); } void calc() { const int m = srcs.size(); for (int i = 0; i < m; ++i) { graph[srcs[i]][dsts[i]] = std::min(graph[srcs[i]][dsts[i]], costs[i]); if (costs[i] <= dist[srcs[i]][dsts[i]]) { dist[srcs[i]][dsts[i]] = costs[i]; internal[srcs[i]][dsts[i]] = -1; } } std::vector vers(m * 2); std::copy(srcs.begin(), srcs.end(), vers.begin()); std::copy(dsts.begin(), dsts.end(), std::next(vers.begin(), m)); std::sort(vers.begin(), vers.end()); vers.erase(std::unique(vers.begin(), vers.end()), vers.end()); for (const int ver : vers) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (dist[i][j] > dist[i][ver] + dist[ver][j]) { dist[i][j] = dist[i][ver] + dist[ver][j]; internal[i][j] = ver; } } } } srcs.clear(); dsts.clear(); costs.clear(); } bool has_negative_cycle() const { for (int i = 0; i < n; ++i) { if (dist[i][i] < 0) return true; } return false; } std::vector build_path(const int s, const int t) const { std::vector res; if (dist[s][t] != inf) { build_path(s, t, &res); res.emplace_back(t); } return res; } private: const T inf; const int n; std::vector srcs, dsts; std::vector costs; std::vector> internal; void build_path(const int s, const int t, std::vector* path) const { const int k = internal[s][t]; if (k == -1) { (*path).emplace_back(s); } else { build_path(s, k, path); build_path(k, t, path); } } }; int main() { using namespace geometry; int n, m; cin >> n >> m; vector points(n * 2); REP(i, n * 2) cin >> points[i]; vector logs(n); REP(i, n) logs[i] = Segment(points[i * 2], points[i * 2 + 1]); vector graph(n * 2, vector(n * 2, 1. * INF)); REP(i, n * 2) graph[i][i] = 0; REP(i, n * 2) FOR(j, i + 1, n * 2) { const Segment seg(points[i], points[j]); bool is_valid = true; REP(k, n) { if (i / 2 == k || j / 2 == k) continue; if (has_intersected(seg, logs[k])) { is_valid = false; break; } } if (is_valid) graph[i][j] = graph[j][i] = sqrt((points[i] - points[j]).norm()); } const WarshallFloyd warshall_floyd(graph, 1. * INF); while (m--) { int a, b, c, d; cin >> a >> b >> c >> d; --a; --b; --c; --d; const int s = a * 2 + b, t = c * 2 + d; cout << warshall_floyd.dist[s][t] << '\n'; } return 0; }