#include using namespace std; #define F0(i,n) for (int i=0; i pii; typedef long long ll; const double EPS = 1e-9; const int MOD = 998244353; #define PR(x) cerr << #x << "=" << x << endl template ostream& operator<<(ostream& os, const pair& p) { os << "(" << p.first << ", " << p.second << ")"; return os; } template ostream& operator<<(ostream& os, const tuple& p) { os << "(" << get<0>(p) << ", " << get<1>(p) << ", " << get<2>(p) << ")"; return os; } istream& operator>>(istream& is, pii& p) { is>>p.first>>p.second; return is; } template ostream& operator<<(ostream& os, const vector& v) { os << "["; F0(i,SZ(v)) { if (i>0) os << ","; os << v[i]; } os << "]"; return os; } template ostream& operator<<(ostream& os, const set& v) { os << "{"; int f=1; for(auto i:v) { if(f)f=0;else os << ","; cerr << i; } os << "}" << endl; return os; } template ostream& operator<<(ostream& os, const map& v) { os << "{"; int f=1; for(auto i:v) { if(f)f=0;else os << ", "; cerr << i.first << ":" << i.second; } os << "}" << endl; return os; } int i, j, k, n; ll m, ans; const int N = 200005; const int M = 435; int dp[N]; const int DX[]={-1,0,1,0}; const int DY[]={0,1,0,-1}; const string CS="nesw"; const string HS="URDL"; void Add(int& x, int y) { x += y; if (x >= MOD) x -= MOD; } ll Mult(int x, int y) { return 1LL * x * y % MOD; } ll modpow(ll x, ll n) { if (n == 0) return 1; ll y = modpow(x, n / 2); y = (y * y) % MOD; if (n & 1) y = (y * x) % MOD; return y; } const int MAXN = 200001; ll f[MAXN], rf[MAXN]; ll C(int n, int k) { return f[n] * rf[k] % MOD * rf[n - k] % MOD; } void Solve() { dp[0] = 1; F1(i, n) { dp[i] = dp[i - 1]; if (i >= m) { ll x = C(i - 1, m - 1); x = Mult(x, f[m - 1]); x = Mult(x, dp[i - m]); Add(dp[i], x); } } ans = f[n] - dp[n]; if (ans < 0) ans += MOD; cout << ans << endl; } int main() { //ignore = freopen("x.in", "r", stdin); //freopen("x.out", "w", stdout); //int tn; cin >> tn; //F1(ti, tn) { f[0] = rf[0] = 1; for (int i = 1; i <= 200000; i++) { f[i] = (f[i - 1] * i) % MOD; rf[i] = modpow(f[i], MOD - 2); } while (cin >> n >> m) { //PR(n); Solve(); } return 0; }