def resolve(): import sys input = sys.stdin.readline n, m = map(int, input().split()) p = tuple(map(int, input().split())) i = inversion_num_compress(p) if m % 2 == 0 and (m - i) % 2 == 1: print(-1) return import math print(i + math.lcm(abs(m - i), 2)) def inversion_num_compress(l): s = set(l) d = {x: i for i, x in enumerate(sorted(s))} r = [d[x] + 1 for x in l] bit = BIT(len(s) + 1) res = 0 for i, p in enumerate(r): bit.add(p, 1) res += i + 1 - bit.sum(p) return res class BIT: # Binary Indexed Tree (Fenwick Tree) def __init__(self, n): self.n = n self.data = [0] * (n + 1) self.el = [0] * (n + 1) def sum(self, i): s = 0 while i > 0: s += self.data[i] i -= i & -i return s def add(self, i, x): # assert i > 0 self.el[i] += x while i <= self.n: self.data[i] += x i += i & -i def get(self, i, j=None): if j is None: return self.el[i] return self.sum(j) - self.sum(i) if __name__ == "__main__": resolve()