#pragma region competitive_programming #ifdef __LOCAL #define _GLIBCXX_DEBUG #endif #pragma GCC optimize("Ofast") #include //#include //#include "Rollback_dsu.hpp" //#include "Partial_Persistent_DSU.hpp" //#include #include #include #include #ifdef _MSC_VER #include #endif #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder namespace tomo0608 { std::istream& operator>>(std::istream& is, atcoder::modint998244353& a) { long long v; is >> v; a = v; return is; } std::ostream& operator<<(std::ostream& os, const atcoder::modint998244353& a) { return os << a.val(); } std::istream& operator>>(std::istream& is, atcoder::modint1000000007& a) { long long v; is >> v; a = v; return is; } std::ostream& operator<<(std::ostream& os, const atcoder::modint1000000007& a) { return os << a.val(); } template std::istream& operator>>(std::istream& is, atcoder::static_modint& a) { long long v; is >> v; a = v; return is; } template std::ostream& operator<<(std::ostream& os, const atcoder::static_modint& a) { return os << a.val(); } template std::istream& operator>>(std::istream& is, atcoder::dynamic_modint& a) { long long v; is >> v; a = v; return is; } template std::ostream& operator<<(std::ostream& os, const atcoder::dynamic_modint& a) { return os << a.val(); } // Binomial Coefficient of modint template struct BiCoef { std::vector fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].mod(); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } constexpr mint com(int n, int k) const noexcept { if (n < k || n < 0 || k < 0)return 0; return fact_[n] * finv_[k] * finv_[n - k]; } constexpr mint perm(int n, int k) const noexcept { if (n < k || n < 0 || k < 0)return 0; return fact_[n] * finv_[n - k]; } constexpr mint homo(int n, int r) { // The number of cases where k indistinguishable balls are put into n distinct boxes if (n < 0 || r < 0)return 0; return r == 0 ? 1 : com(n + r - 1, r); } constexpr mint second_stirling_number(int n, int r) { // The number of cases where n distinct balls are put into k indistinguishable boxes, with at least one ball in each box mint ret = 0; for (int i = 0; i <= r; i++) { mint tmp = com(r, i) * mint(i).pow(n); ret += ((r - i) & 1) ? -tmp : tmp; } return ret * finv_[r]; } constexpr mint bell_number(int n, int r) { // The number of cases where n distinct balls are put into k indistinguishable boxes if (n == 0) return 1; r = std::min(r, n); std::vector pref(r + 1); pref[0] = 1; for (int i = 1; i <= r; i++) { if (i & 1) { pref[i] = pref[i - 1] - finv_[i]; } else { pref[i] = pref[i - 1] + finv_[i]; } } mint ret = 0; for (int i = 1; i <= r; i++) ret += mint(i).pow(n) * fact_[i] * pref[r - i]; return ret; } constexpr mint fact(int n) const noexcept { if (n < 0)return 0; return fact_[n]; } constexpr mint inv(int n) const noexcept { if (n < 0)return 0; return inv_[n]; } constexpr mint finv(int n) const noexcept { if (n < 0)return 0; return finv_[n]; } inline mint operator()(int n, int k) { return com(n, k); } constexpr mint com_naive(int n, int k) { if (n < k || n < 0 || k < 0)return 0; mint res = 1; k = std::min(k, n - k); for (int i = 1; i <= k; i++)res *= inv(i) * (n--); return res; } }; } // namespace tomo0608 //typedef atcoder::modint1000000007 mint; typedef atcoder::modint998244353 mint; //#include "Matrix.hpp" //#include //#include "Formal_Power_Series.hpp" //#include "Bit_Convolution.hpp" //#include //#include //#include "Primal_Dual.hpp" //#include "maxflow_mincap.hpp" //#include //#include //#include //#include "2D_Segment_Tree.hpp" //#include "DisjointSparseTable.hpp" //#include "SWAG.hpp" //#include "Mo_algorithm.hpp" //#include "Heavy_Light_Decomposition.hpp" //#include "Binary_Trie.hpp" //#include "LCT.hpp" //#include "Slope_Trick.hpp" //#include //#include namespace tomo0608 { typedef long long ll; typedef long double ld; template using V = std::vector; template using VV = V>; template using VVV = V>; typedef std::pair pii; typedef std::pair pll; templatevoid input(T&... a) { (std::cin >> ... >> a); }; #define INT(...) int __VA_ARGS__; IN(__VA_ARGS__) #define LL(...) long long __VA_ARGS__; IN(__VA_ARGS__) #define STR(...) string __VA_ARGS__; IN(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; IN(__VA_ARGS__) #define VEC(type, name, size) std::vector name(size);IN(name) #define VECVEC(type, name, h, w) std::vector> name(h, std::vector(w));IN(name) template std::istream& operator>>(std::istream& is, std::pair& p) { is >> p.first >> p.second; return is; } template std::ostream& operator<<(std::ostream& os, const std::pair& p) { os << '(' << p.first << ", " << p.second << ')'; return os; } template std::istream& operator>>(std::istream& is, std::vector& v) { for (auto& e : v) is >> e; return is; } template std::ostream& operator<<(std::ostream& os, const std::vector& v) { for (auto& e : v) os << e << ' '; return os; } template std::ostream& operator << (std::ostream& os, std::set& set_var) { os << "{"; for (auto itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr;++itr;if (itr != set_var.end()) os << ", ";itr--; }os << "}";return os; } template std::ostream& operator<<(std::ostream& os, std::map& map_var) { os << "{";for (auto itr = map_var.begin(); itr != map_var.end(); itr++) { os << *itr;itr++;if (itr != map_var.end()) os << ", ";itr--; }os << "}";return os; } void IN() {} template void IN(Head& head, Tail &...tail) { std::cin >> head; IN(tail...); } void print() { std::cout << '\n'; } templatevoid print(const T& a, const Ts&... b) { std::cout << a; (std::cout << ... << (std::cout << ' ', b)); std::cout << '\n'; } void drop() { std::cout << '\n';exit(0); } templatevoid drop(const T& a, const Ts&... b) { std::cout << a; (std::cout << ... << (std::cout << ' ', b)); std::cout << '\n';exit(0); } #ifdef __LOCAL void debug_out() { std::cerr << std::endl; } template < class Head, class... Tail> void debug_out(Head H, Tail... T) { std::cerr << ' ' << H; debug_out(T...); } #define debug(...) std::cerr << 'L' << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #define dump(x) std::cerr << 'L' << __LINE__ << " " << #x << " = " << (x) << std::endl #else #define debug(...) (void(0)) #define dump(x) (void(0)) #endif #define rep1(a) for(long long i = 0; i < a; i++) #define rep2(i, a) for(long long i = 0; i < a; i++) #define rep3(i, a, b) for(long long i = a; i < b; i++) #define rep4(i, a, b, c) for(long long i = a; i < b; i += c) #define drep1(a) for(long long i = a-1; i >= 0; i--) #define drep2(i, a) for(long long i = a-1; i >= 0; i--) #define drep3(i, a, b) for(long long i = a-1; i >= b; i--) #define drep4(i, a, b, c) for(long long i = a-1; i >= b; i -= c) #define overload4(a, b, c, d, e, ...) e #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define drep(...) overload4(__VA_ARGS__, drep4, drep3, drep2, drep1)(__VA_ARGS__) #define endl '\n' } // namespace tomo0608 namespace tomo0608 { #define ALL(x) x.begin(),x.end() template T SUM(const S& v) { return accumulate(ALL(v), T(0)); } #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define SORT(v) sort(ALL(v)) #define REVERSE(v) reverse(ALL(v)) #define RSORT(v) sort(ALL(v)); reverse(ALL(v)) #define UNIQUE(x) SORT(x), x.erase(unique(ALL(x)), x.end()) #define lb(c, x) distance((c).begin(), lower_bound(ALL(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(ALL(c), (x))) template void zip(std::vector& x) { std::vector y = x;UNIQUE(y);for (int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } template using priority_queue_rev = std::priority_queue, std::greater>; template inline bool chmax(T& a, const U& b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, const U& b) { if (a > b) { a = b; return 1; } return 0; } template inline int count_between(std::vector& a, T l, T r) { return lower_bound(all(a), r) - lower_bound(all(a), l); } // [l, r) #define bittest(n, k) ((n >> k) & 1) int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int lowbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); } #define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(ALL(v)));) template T ceil(T x, S y) { assert(y); return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y)); } template T floor(T x, S y) { assert(y); return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1))); } } //using namespace atcoder; using namespace std; using namespace tomo0608; int dx[8] = { 1, 0, -1, 0, 1, 1, -1, -1 }; int dy[8] = { 0, 1, 0, -1, 1, -1, -1, 1 }; // インタラクティブ問題のときは出力するたびにcout.flush();を忘れない!!!!! void solve(); int main() { std::cin.tie(0); std::ios_base::sync_with_stdio(false); std::cout << std::setprecision(20); int codeforces = 1; //cin >> codeforces; while (codeforces--) { solve(); } return 0; } #pragma endregion void solve() { LL(n, k); if (n == 1) { if (k == 1 || k == 5 || k == 6)drop(1); if (k == 2 || k == 4)drop(3); if (k == 3)drop(3); } BiCoef B(3 * n + 10); mint ans = B.com(2 * n + 4, k); //0 if (k % 2) { if (n % 2) { ans += 2 * B.com(n + 1, (k - 1) / 2); } } else { ans += B.com(n + 2, k / 2) * 2; if (n % 2)ans += B.com(n + 1, k / 2) + B.com(n + 1, k / 2 - 1); else ans += B.com(n + 2, k / 2); } ans /= 4; print(ans); }