//https://github.com/rust-lang-ja/ac-library-rs pub mod fenwicktree { use std::ops::{Bound, RangeBounds}; // Reference: https://en.wikipedia.org/wiki/Fenwick_tree pub struct FenwickTree { n: usize, ary: Vec, e: T, } impl> FenwickTree { pub fn new(n: usize, e: T) -> Self { FenwickTree { n, ary: vec![e.clone(); n], e, } } pub fn accum(&self, mut idx: usize) -> T { let mut sum = self.e.clone(); while idx > 0 { sum += self.ary[idx - 1].clone(); idx &= idx - 1; } sum } /// performs data[idx] += val; pub fn add(&mut self, mut idx: usize, val: U) where T: std::ops::AddAssign, { let n = self.n; idx += 1; while idx <= n { self.ary[idx - 1] += val.clone(); idx += idx & idx.wrapping_neg(); } } /// Returns data[l] + ... + data[r - 1]. pub fn sum(&self, range: R) -> T where T: std::ops::Sub, R: RangeBounds, { let r = match range.end_bound() { Bound::Included(r) => r + 1, Bound::Excluded(r) => *r, Bound::Unbounded => self.n, }; let l = match range.start_bound() { Bound::Included(l) => *l, Bound::Excluded(l) => l + 1, Bound::Unbounded => return self.accum(r), }; self.accum(r) - self.accum(l) } } #[cfg(test)] mod tests { use super::*; use std::ops::Bound::*; #[test] fn fenwick_tree_works() { let mut bit = FenwickTree::new(5, 0i64); // [1, 2, 3, 4, 5] for i in 0..5 { bit.add(i, i as i64 + 1); } assert_eq!(bit.sum(0..5), 15); assert_eq!(bit.sum(0..4), 10); assert_eq!(bit.sum(1..3), 5); assert_eq!(bit.sum(..), 15); assert_eq!(bit.sum(..2), 3); assert_eq!(bit.sum(..=2), 6); assert_eq!(bit.sum(1..), 14); assert_eq!(bit.sum(1..=3), 9); assert_eq!(bit.sum((Excluded(0), Included(2))), 5); } } } use fenwicktree::*; pub mod binary_search { type T = usize; pub fn binary_search(mut ok: T, mut ng: T, f: impl Fn(T) -> bool) -> T { let cont = |ok: T, ng: T| { let l = ok.min(ng); let r = ok.max(ng); l + 1 < r }; while cont(ok, ng) { let x = (ok + ng) / 2; if f(x) { ok = x; } else { ng = x; } } ok } } pub mod scanner { pub struct Scanner { buf: Vec, } impl Scanner { pub fn new() -> Self { Self { buf: vec![] } } pub fn new_from(source: &str) -> Self { let source = String::from(source); let buf = Self::split(source); Self { buf } } pub fn next(&mut self) -> T { loop { if let Some(x) = self.buf.pop() { return x.parse().ok().expect(""); } let mut source = String::new(); std::io::stdin().read_line(&mut source).expect(""); self.buf = Self::split(source); } } fn split(source: String) -> Vec { source .split_whitespace() .rev() .map(String::from) .collect::>() } } } use crate::FenwickTree; use crate::{binary_search::binary_search, scanner::Scanner}; use std::io::Write; fn main() { let mut scanner = Scanner::new(); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); let t: usize = 1; for _ in 0..t { solve(&mut scanner, &mut out); } } fn solve(scanner: &mut Scanner, out: &mut std::io::BufWriter) { let n: usize = scanner.next(); let m: usize = scanner.next(); let p = (0..n) .map(|_| scanner.next::() - 1) .collect::>(); let mut count = 0usize; let mut bit = FenwickTree::new(n, 0usize); for i in 0..n { count += p[i] - bit.sum(0..p[i]); bit.add(p[i], 1); } if count == 0 { writeln!(out, "0").unwrap(); return; } if m % 2 == 0 && count % 2 == 1 { writeln!(out, "-1").unwrap(); return; } let mut x = binary_search(2e18 as usize / m, 0, |x| count <= x * m); if x * m % 2 != count % 2 { x += 1; } writeln!(out, "{}", x * m).unwrap(); }