// >>> TEMPLATES #include using namespace std; using ll = long long; using ld = long double; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; #define int ll using pii = pair; #define overload3(_1, _2, _3, f, ...) f #define v1_rep(n) for (int _n = (n); _n--; ) #define v2_rep(i, n) if (const int _n = (n); true) for (int i = 0; i < _n; i++) #define v3_rep(i, a, b) if (const int _b = (b); true) for (int i = (a); i < _b; i++) #define rep(...) overload3(__VA_ARGS__, v3_rep, v2_rep, v1_rep)(__VA_ARGS__) #define v2_repR(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define v3_repR(i, a, b) if (const int _a = (a); true) for (int i = int(b)-1; i >= _a; i--) #define repR(...) overload3(__VA_ARGS__, v3_repR, v2_repR, v1_rep)(__VA_ARGS__) #define rep1(i, n) if (const int _rep_n = n; true) for (int i = 1; i <= _rep_n; i++) #define rep1R(i, n) for (int i = (int)(n); i >= 1; i--) #define loop(i, a, B) for (int i = a; i B; i++) #define loopR(i, a, B) for (int i = a; i B; i--) #define all(x) begin(x), end(x) #define allR(x) rbegin(x), rend(x) #define pb push_back #define eb emplace_back #define fst first #define snd second template auto constexpr inf_ = numeric_limits::max()/2-1; auto constexpr INF32 = inf_; auto constexpr INF64 = inf_; auto constexpr INF = inf_; #ifdef LOCAL #include "debug.hpp" #define oj_local(x, y) (y) #else #define dump(...) false #define if_debug if (0) #define oj_local(x, y) (x) #endif template struct pque : priority_queue, Comp> { vector &data() { return this->c; } void clear() { this->c.clear(); } }; template using pque_max = pque>; template using pque_min = pque>; template ::value, int> = 0> ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template ::value, int> = 0> ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template ())), class = typename enable_if::value>::type> istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; } template ostream& operator<<(ostream& os, pair const& p) { return os << p.first << " " << p.second; } template istream& operator>>(istream& is, pair& p) { return is >> p.first >> p.second; } template ostream& operator<<(ostream& os, tuple const& t) { bool f = true; apply([&](auto&&... x) { ((os << (f ? f = false, "" : " ") << x), ...); }, t); return os; } template istream& operator>>(istream& is, tuple& t) { apply([&](auto&&... x) { ((is >> x), ...); }, t); return is; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward(f)) {} template constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward(x)...); } }; struct MakeFixPoint { template constexpr auto operator|(F&& f) const { return FixPoint(forward(f)); } }; #define def(name, ...) auto name = MakeFixPoint() | [&](auto &&name, __VA_ARGS__) template struct FixPoint_d : private F { const char* const name; constexpr FixPoint_d(F&& f, const char* name) : F(forward(f)), name(name) {} template constexpr auto operator()(T&&... x) const { auto ret = F::operator()(*this, forward(x)...); #ifdef LOCAL cerr << name << to_s(tuple(x...)) << " -> " << to_s(ret) << '\n'; #endif return ret; } }; struct MakeFixPoint_d { const char* const name; MakeFixPoint_d(const char* name) : name(name) {} template constexpr auto operator|(F&& f) const { return FixPoint_d(forward(f), name); } }; #ifdef LOCAL #define def_d(name, ...) auto name = MakeFixPoint_d(#name) | [&](auto &&name, __VA_ARGS__) #else #define def_d def #endif struct Reader { template T get() const{ T x; cin >> x; return x; } template operator T() const { return get(); } template void operator()(T&... args) const { ((cin >> args), ...); } } input; namespace impl { template struct mvec { using type = vector::type>; }; template struct mvec { using type = T; }; template constexpr size_t head(index_sequence) { return i; } template constexpr auto tail(index_sequence) { return index_sequence{}; } template auto make_v(index_sequence, const int (&s)[d], Value const& x) { if constexpr (sizeof...(i) == 0) { return (T)x; } else { typename mvec::type ret; auto idx = index_sequence{}; int n = s[head(idx)]; if (n < 0) cerr << "[error] negative size: {" << s << "}\n", abort(); ret.reserve(n); while (n-- > 0) ret.emplace_back(make_v(tail(idx), s, x)); return ret; } } } // namespace impl template using mvec = typename impl::mvec::type; template auto make_v(const int (&s)[d], Value const& x) { return impl::make_v(make_index_sequence{}, s, x); } template auto make_v(const int (&s)[d]) { return impl::make_v(make_index_sequence{}, s, T{}); } template auto make_v(Size... s) { return impl::make_v(make_index_sequence{}, (int[sizeof...(s)]){s...}, T{}); } template void quit(T const& x) { cout << x << '\n'; exit(0); } template constexpr bool chmin(T& x, U const& y) { return x > (T)y ? x = (T)y, true : false; } template constexpr bool chmax(T& x, U const& y) { return x < (T)y ? x = (T)y, true : false; } template constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits::value_type{}); } template ()))> constexpr auto min(T const& a) { return *min_element(begin(a), end(a)); } template ()))> constexpr auto max(T const& a) { return *max_element(begin(a), end(a)); } template constexpr T min(set const& st) { assert(st.size()); return *st.begin(); } template constexpr T max(set const& st) { assert(st.size()); return *prev(st.end()); } template constexpr T min(multiset const& st) { assert(st.size()); return *st.begin(); } template constexpr T max(multiset const& st) { assert(st.size()); return *prev(st.end()); } constexpr ll max(signed x, ll y) { return max(x, y); } constexpr ll max(ll x, signed y) { return max(x, y); } constexpr ll min(signed x, ll y) { return min(x, y); } constexpr ll min(ll x, signed y) { return min(x, y); } template int sz(T const& x) { return x.size(); } template int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x) - begin(v); } constexpr ll mod(ll x, ll m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; } constexpr ll div_floor(ll x, ll y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); } constexpr ll div_ceil(ll x, ll y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); } constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 }; constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 }; vector iota(int n) { vector idx(n); iota(begin(idx), end(idx), 0); return idx; } template vector iota(int n, Comp comp) { vector idx(n); iota(begin(idx), end(idx), 0); stable_sort(begin(idx), end(idx), comp); return idx; } constexpr int popcnt(ll x) { return __builtin_popcountll(x); } mt19937_64 seed_{random_device{}()}; template Int rand(Int a, Int b) { return uniform_int_distribution(a, b)(seed_); } i64 irand(i64 a, i64 b) { return rand(a, b); } // [a, b] u64 urand(u64 a, u64 b) { return rand(a, b); } // template void shuffle(It l, It r) { shuffle(l, r, seed_); } template V &operator--(V &v) { for (auto &x : v) --x; return v; } template V &operator++(V &v) { for (auto &x : v) ++x; return v; } bool next_product(vector &v, int m) { repR (i, v.size()) if (++v[i] < m) return true; else v[i] = 0; return false; } bool next_product(vector &v, vector const& s) { repR (i, v.size()) if (++v[i] < s[i]) return true; else v[i] = 0; return false; } template int sort_unique(Vec &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v.size(); } template int sort_unique(Vec &v, Comp comp) { sort(begin(v), end(v), comp); v.erase(unique(begin(v), end(v)), end(v)); return v.size(); } template auto prefix_sum(It l, It r) { vector s = { 0 }; while (l != r) s.emplace_back(s.back() + *l++); return s; } template auto suffix_sum(It l, It r) { vector s = { 0 }; while (l != r) s.emplace_back(*--r + s.back()); reverse(s.begin(), s.end()); return s; } template T pop(vector &a) { auto x = a.back(); a.pop_back(); return x; } template T pop_back(vector &a) { auto x = a.back(); a.pop_back(); return x; } template T pop(priority_queue &a) { auto x = a.top(); a.pop(); return x; } template T pop(queue &a) { auto x = a.front(); a.pop(); return x; } template T pop_front(deque &a) { auto x = a.front(); a.pop_front(); return x; } template T pop_back(deque &a) { auto x = a.back(); a.pop_back(); return x; } template T pop_front(set &a) { auto x = *a.begin(); a.erase(a.begin()); return x; } template T pop_back(set &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } template T pop_front(multiset &a) { auto it = a.begin(); auto x = *it; a.erase(it); return x; } template T pop_back(multiset &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } template pair, vector> unzip(vector> const& c) { vector a; vector b; for (auto const& [x, y] : c) { a.push_back(x); b.push_back(y); } return { a, b }; } template pair, vector> unzip(map const& c) { vector a; vector b; for (auto const& [x, y] : c) { a.push_back(x); b.push_back(y); } return { a, b }; } template auto read_v(Int... s) { auto x = make_v(s...); cin >> x; return x; } template auto read_v() { T x; cin >> x; return x; } template auto read(Int... s) { if constexpr (sizeof...(T) >= 2) { return read_v>(s...); } else { return read_v(s...); } } template auto read(Int... s) { return read_v>(s...); } // <<< constexpr int64_t MOD = 998244353; //constexpr int64_t MOD = 1e9+7; // >>> modint, mod table // >>> modint template class modint { static_assert(md < (1u<<31), ""); using M = modint; using i64 = int64_t; uint32_t x; public: static constexpr uint32_t mod = md; constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { } constexpr i64 val() const { return x; } constexpr explicit operator i64() const { return x; } constexpr bool operator==(M r) const { return x == r.x; } constexpr bool operator!=(M r) const { return x != r.x; } constexpr M operator+() const { return *this; } constexpr M operator-() const { return M()-*this; } constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; } constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; } constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; } constexpr M& operator/=(M r) { return *this *= r.inv(); } constexpr M operator+(M r) const { return M(*this) += r; } constexpr M operator-(M r) const { return M(*this) -= r; } constexpr M operator*(M r) const { return M(*this) *= r; } constexpr M operator/(M r) const { return M(*this) /= r; } friend constexpr M operator+(i64 x, M y) { return M(x)+y; } friend constexpr M operator-(i64 x, M y) { return M(x)-y; } friend constexpr M operator*(i64 x, M y) { return M(x)*y; } friend constexpr M operator/(i64 x, M y) { return M(x)/y; } constexpr M inv() const { assert(x > 0); return pow(md-2); } constexpr M pow(i64 n) const { // assert(not (x == 0 and n == 0)); if (n < 0) return inv().pow(-n); M v = *this, r = 1; for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v; return r; } #ifdef LOCAL friend string to_s(M r) { return to_s(r.val(), mod); } #endif friend ostream& operator<<(ostream& os, M r) { return os << r.val(); } friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; } }; // <<< using mint = modint; mint sign(int n) { return n & 1 ? -1 : +1; } // >>> mod table template struct ModTable { static_assert(mod > 1, ""); vector fact = { 1, 1 }, finv = { 1, 1 }, inv = { 0, 1 }; ModTable(int n = 0) { calc(n); } void calc(int n) { const int now = fact.size(); if (n < now) return; assert(n < int(1e9)); int nxt = now; do nxt <<= 1; while (nxt <= n); fact.resize(nxt); finv.resize(nxt); inv.resize(nxt); for (uint32_t i = now; i < nxt; i++) { fact[i] = uint64_t(fact[i-1]) * i % mod; inv[i] = mod - uint64_t(inv[mod%i]) * (mod/i) % mod; finv[i] = uint64_t(finv[i-1]) * inv[i] % mod; } } }; ModTable mod_tab; modint fact(int n) { assert(0 <= n); mod_tab.calc(n); return mod_tab.fact[n]; } modint finv(int n) { assert(0 <= n); mod_tab.calc(n); return mod_tab.finv[n]; } modint inv(int n) { assert(0 <= n); mod_tab.calc(n); return mod_tab.inv[n]; } modint comb(int n, int k) { if (k < 0) { return 0; } else if (n >= k) { mod_tab.calc(n); return (uint64_t)mod_tab.finv[k] * mod_tab.finv[n-k] % MOD * mod_tab.fact[n]; } else if (n < 0) { n = -n+k-1; mod_tab.calc(n); int ans = (uint64_t)mod_tab.finv[k] * mod_tab.finv[n-k] % MOD * mod_tab.fact[n]; if (k & 1) ans = -ans; return ans; } else { return 0; } } // <<< // <<< int32_t main() { int n(input), k(input); if (n == 2) { quit(1); } else if (n == 6) { if (k == 2) quit(192); if (k == 3) quit(54); if (k == 4) quit(16); if (k == 5) quit(10); if (k == 6) quit(6); } else { cout << fact(n-k) * k << '\n'; } }