#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(clippy::type_complexity)] #![allow(clippy::needless_range_loop)] #![allow(dead_code)] use std::{ cmp::Reverse, collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque}, }; mod rnd { static mut S: usize = 0; static MAX: usize = 1e9 as usize; #[inline] pub fn init(seed: usize) { unsafe { if seed == 0 { let t = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap() .as_secs() as usize; S = t } else { S = seed; } } } #[inline] pub fn gen() -> usize { unsafe { if S == 0 { init(0); } S ^= S << 7; S ^= S >> 9; S } } #[inline] pub fn gen_range(a: usize, b: usize) -> usize { gen() % (b - a) + a } #[inline] pub fn gen_bool() -> bool { gen() & 1 == 1 } #[inline] pub fn gen_range_isize(a: usize) -> isize { let mut x = (gen() % a) as isize; if gen_bool() { x *= -1; } x } #[inline] pub fn gen_range_neg_wrapping(a: usize) -> usize { let mut x = gen() % a; if gen_bool() { x = x.wrapping_neg(); } x } #[inline] pub fn gen_float() -> f64 { ((gen() % MAX) as f64) / MAX as f64 } } #[derive(Debug, Clone)] struct TimeKeeper { start_time: std::time::Instant, time_threshold: f64, } impl TimeKeeper { fn new(time_threshold: f64) -> Self { TimeKeeper { start_time: std::time::Instant::now(), time_threshold, } } #[inline] fn isTimeOver(&self) -> bool { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 >= self.time_threshold } #[cfg(not(feature = "local"))] { elapsed_time >= self.time_threshold } } #[inline] fn get_time(&self) -> f64 { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 } #[cfg(not(feature = "local"))] { elapsed_time } } } const H: usize = 60; const W: usize = 25; const TURN: usize = 1000; #[derive(Debug, Clone)] struct State { pos: usize, enemy: [[(usize, usize); W]; H], turn: usize, } impl State { fn new() -> Self { State { pos: 12, enemy: [[(0, 0); W]; H], turn: 0, } } fn is_done(&self) -> bool { self.turn == TURN } } #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { let mut state = State::new(); while !state.is_done() { // input! { // N: isize // } let N: isize = read(); if N == -1 { return; } state.turn += 1; // input! { // HPX: [(usize, usize, usize); N] // } let mut HPX = vec![]; for _ in 0..N { let v: Vec = read_vec(); let h = v[0]; let p = v[1]; let x = v[2]; HPX.push((h, p, x)); } // println!("S"); let r = rnd::gen_range(0, 3); if r == 0 { println!("S"); } else if r == 1 { println!("L"); } else { println!("R"); } } } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } // #[macro_export] // macro_rules! input { // () => {}; // (mut $var:ident: $t:tt, $($rest:tt)*) => { // let mut $var = __input_inner!($t); // input!($($rest)*) // }; // ($var:ident: $t:tt, $($rest:tt)*) => { // let $var = __input_inner!($t); // input!($($rest)*) // }; // (mut $var:ident: $t:tt) => { // let mut $var = __input_inner!($t); // }; // ($var:ident: $t:tt) => { // let $var = __input_inner!($t); // }; // } // #[macro_export] // macro_rules! __input_inner { // (($($t:tt),*)) => { // ($(__input_inner!($t)),*) // }; // ([$t:tt; $n:expr]) => { // (0..$n).map(|_| __input_inner!($t)).collect::>() // }; // ([$t:tt]) => {{ // let n = __input_inner!(usize); // (0..n).map(|_| __input_inner!($t)).collect::>() // }}; // (chars) => { // __input_inner!(String).chars().collect::>() // }; // (bytes) => { // __input_inner!(String).into_bytes() // }; // (usize1) => { // __input_inner!(usize) - 1 // }; // ($t:ty) => { // $crate::read::<$t>() // }; // } // #[macro_export] // macro_rules! println { // () => { // $crate::write(|w| { // use std::io::Write; // std::writeln!(w).unwrap() // }) // }; // ($($arg:tt)*) => { // $crate::write(|w| { // use std::io::Write; // std::writeln!(w, $($arg)*).unwrap() // }) // }; // } // #[macro_export] // macro_rules! print { // ($($arg:tt)*) => { // $crate::write(|w| { // use std::io::Write; // std::write!(w, $($arg)*).unwrap() // }) // }; // } // #[macro_export] // macro_rules! flush { // () => { // $crate::write(|w| { // use std::io::Write; // w.flush().unwrap() // }) // }; // } // pub fn read() -> T // where // T: std::str::FromStr, // T::Err: std::fmt::Debug, // { // use std::cell::RefCell; // use std::io::*; // thread_local! { // pub static STDIN: RefCell> = RefCell::new(stdin().lock()); // } // STDIN.with(|r| { // let mut r = r.borrow_mut(); // let mut s = vec![]; // loop { // let buf = r.fill_buf().unwrap(); // if buf.is_empty() { // break; // } // if let Some(i) = buf.iter().position(u8::is_ascii_whitespace) { // s.extend_from_slice(&buf[..i]); // r.consume(i + 1); // if !s.is_empty() { // break; // } // } else { // s.extend_from_slice(buf); // let n = buf.len(); // r.consume(n); // } // } // std::str::from_utf8(&s).unwrap().parse().unwrap() // }) // } // pub fn write(f: F) // where // F: FnOnce(&mut std::io::BufWriter), // { // use std::cell::RefCell; // use std::io::*; // thread_local! { // pub static STDOUT: RefCell>> = // RefCell::new(BufWriter::new(stdout().lock())); // } // STDOUT.with(|w| f(&mut w.borrow_mut())) // }