namespace atcoder {} #ifdef LOCAL #define dbg(x) cerr << __LINE__ << " : " << #x << " = " << (x) << endl; #else #define NDEBUG #define dbg(x) true; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #ifdef GTEST #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PERF #include #endif using namespace std; using namespace atcoder; #define fast_io \ ios_base::sync_with_stdio(false); \ cin.tie(0); \ cout.tie(0); #define ll long long int #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define reps(i, n) for (int i = 1; i <= (int)(n); i++) #define REP(i, n) for (int i = n - 1; i >= 0; i--) #define REPS(i, n) for (int i = n; i > 0; i--) #define MOD (long long int)(1e9 + 7) #define INF (int)(1e9) #define LINF (long long int)(1e18) #define chmax(a, b) a = (((a) < (b)) ? (b) : (a)) #define chmin(a, b) a = (((a) > (b)) ? (b) : (a)) #define all(v) v.begin(), v.end() typedef pair Pii; typedef pair Pll; constexpr double PI = acos(-1); #ifdef NDEBUG #define CHECK(v1, op, v2) #else #define CHECK(v1, op, v2) \ if (!((v1)op(v2))) { \ cerr << "ERROR:" << (v1) << " " << (v2) << endl; \ assert((v1)op(v2)); \ } #endif long double nCr(const int n, const int r) { long double ret = 1; rep(t, r) { ret *= (n - t); ret /= (r - t); } return ret; } template string to_string(const vector& vec) { string ret = ""; rep(i, vec.size()) { ret += vec[i].to_string(); if (i + 1 != vec.size()) { ret += ","; } } return ret; } template ostream& operator<<(ostream& os, const vector& vec) { os << to_string(vec); return os; } uint32_t xorshift() { static uint32_t x = 12345789; static uint32_t y = 362436069; static uint32_t z = 521288629; static uint32_t w = 88675123; uint32_t t; t = x ^ (x << 11); x = y; y = z; z = w; w ^= t ^ (t >> 8) ^ (w >> 19); return w; } int rand(const uint32_t l, const uint32_t r) { return xorshift() % (r - l) + l; } uint32_t rand_other_than(const uint32_t l, const uint32_t r, const uint32_t other) { const uint32_t num = rand(l, r - 1); return num + (num >= other); } template const T& rand_vec(const vector& vec) { assert(vec.size() > 0); return vec[rand(0, vec.size())]; } template void shuffle(vector& vec) { rep(l, (int)vec.size() - 1) { const int idx = rand(l, vec.size()); swap(vec[idx], vec[l]); } } class Timer { chrono::system_clock::time_point _start, _end; ll _sum = 0, _count = 0; public: void start() { _start = chrono::system_clock::now(); } void stop() { _end = chrono::system_clock::now(); } void add() { const chrono::system_clock::time_point now = chrono::system_clock::now(); _sum += static_cast( chrono::duration_cast(now - _start).count()); _count++; } ll sum() const { return _sum / 1000; } int count() const { return _count; } string average() const { if (_count == 0) { return "NaN"; } return to_string(_sum / 1000 / _count); } void reset() { _start = chrono::system_clock::now(); _sum = 0; _count = 0; } inline int ms() const { const chrono::system_clock::time_point now = chrono::system_clock::now(); return static_cast( chrono::duration_cast(now - _start).count() / 1000); } inline int ns() const { const chrono::system_clock::time_point now = chrono::system_clock::now(); return static_cast( chrono::duration_cast(now - _start).count()); } }; #ifdef LOCAL struct Timers : unordered_map { friend ostream& operator<<(ostream& os, const Timers& timers) { for (const auto& pa : timers) { os << pa.first << " time: " << pa.second.sum() / 1000 << " count: " << pa.second.count() << endl; } return os; } }; #else struct Timers { struct Dummy { void start() const {} void add() const {} }; Dummy dummy; const Dummy& operator[](const std::string& str) { return dummy; } friend ostream& operator<<(ostream& os, const Timers& timers) { return os; } }; #endif Timers global_timers; /* start */ struct Output { friend ostream& operator<<(ostream& os, const Output& output) { return os; } }; /* start */ vector PARAMS = {}; /* start */ struct Enemy { int h, p, y; int original_h; }; enum Action { kL, kR, kS }; // enemys[x] = y vector> enemys; int X = 12; int LEVEL = 1; int SCORE = 0; constexpr int W = 60; constexpr int H = 25; class Solver { public: explicit Solver(istream& is) { enemys.resize(W); } bool Input() { int N; cin >> N; if (N == -1) { return true; } // 一番上の行に新たな敵機が出現する。出現確率は後述のように列ごとに定められている。 rep(i, N) { int h, p, x; cin >> h >> p >> x; enemys[x].push_back(Enemy{h, p, 59, h}); } return false; } void TurnEnd(Action action) { // 自機を左右いずれかに 1 マス移動、またはその場にとどまる。 if (action == kL) { cout << "L" << endl; X -= 1; } else if (action == kR) { cout << "R" << endl; X += 1; } else { cout << "S" << endl; } rep(x, W) { auto& col = enemys[x]; // 自機と同じ列に存在する敵機の中で自機に一番近い敵機を自動で攻撃する。 if (x == X && col.size() >= 1) { col.front().h -= LEVEL; } // フィールドに存在する全ての敵機が下に1 // マス移動する。フィールド外に移動した敵機は消滅する。 for (auto itr = col.begin(); itr != col.end();) { if (itr->h <= 0) { itr = col.erase(itr); continue; } itr->y--; if (itr->y <= -1) { itr = col.erase(itr); continue; } itr++; } } } Action Run() { return kS; } Output Solve(const int time_limit) { rep(t, 1000) { bool fin = Input(); if (fin) { std::quick_exit(0); } const auto action = Run(); TurnEnd(action); } std::quick_exit(0); return Output(); } private: }; int main(int argc, char* argv[]) { fast_io; if (argc >= 2) { int idx = 0; for (int i = 1; i < argc; ++i) { PARAMS[idx++] = std::stod(argv[i]); } } Timer timer; timer.start(); Solver solver(cin); auto output = solver.Solve(5850 - timer.ms()); cout << output << endl; return 0; }