#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(clippy::type_complexity)] #![allow(clippy::needless_range_loop)] #![allow(dead_code)] use std::{ cmp::Reverse, collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque}, }; mod rnd { static mut S: usize = 0; static MAX: usize = 1e9 as usize; #[inline] pub fn init(seed: usize) { unsafe { if seed == 0 { let t = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap() .as_secs() as usize; S = t } else { S = seed; } } } #[inline] pub fn gen() -> usize { unsafe { if S == 0 { init(0); } S ^= S << 7; S ^= S >> 9; S } } #[inline] pub fn gen_range(a: usize, b: usize) -> usize { gen() % (b - a) + a } #[inline] pub fn gen_bool() -> bool { gen() & 1 == 1 } #[inline] pub fn gen_range_isize(a: usize) -> isize { let mut x = (gen() % a) as isize; if gen_bool() { x *= -1; } x } #[inline] pub fn gen_range_neg_wrapping(a: usize) -> usize { let mut x = gen() % a; if gen_bool() { x = x.wrapping_neg(); } x } #[inline] pub fn gen_float() -> f64 { ((gen() % MAX) as f64) / MAX as f64 } } #[derive(Debug, Clone)] struct TimeKeeper { start_time: std::time::Instant, time_threshold: f64, } impl TimeKeeper { fn new(time_threshold: f64) -> Self { TimeKeeper { start_time: std::time::Instant::now(), time_threshold, } } #[inline] fn isTimeOver(&self) -> bool { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 >= self.time_threshold } #[cfg(not(feature = "local"))] { elapsed_time >= self.time_threshold } } #[inline] fn get_time(&self) -> f64 { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 } #[cfg(not(feature = "local"))] { elapsed_time } } } const H: usize = 60; const W: usize = 25; const TURN: usize = 1000; #[derive(Debug, Clone)] struct State { pos: usize, S: usize, enemy: [[(isize, usize); W]; H], turn: usize, freeze: bool, } impl State { fn new() -> Self { State { pos: 12, S: 0, enemy: [[(0, 0); W]; H], turn: 0, freeze: false, } } fn update_enemy(&mut self, HPX: Vec<(usize, usize, usize)>) { for i in 1..H { self.enemy[i - 1] = self.enemy[i]; } let mut new_enemy = [(0, 0); W]; for (h, p, x) in HPX { new_enemy[x] = (h as isize, p); } self.enemy[H - 1] = new_enemy; } fn decide_target(&self) -> Vec<(isize, Reverse, usize, usize)> { let mut targets = vec![]; for i in 1..H { for j in 0..W { if self.enemy[i][j] == (0, 0) { continue; } let (h, p) = self.enemy[i][j]; if self.pos < j { let right = j - self.pos; let left = self.pos + W - j; if left <= right { let dx = left; let dy = i + 1; if dy as isize - dx as isize - h <= 0 { continue; } targets.push((h, Reverse(p), left, 1)); } else { let dx = right; let dy = i + 1; if dy as isize - dx as isize - h <= 0 { continue; } targets.push((h, Reverse(p), right, 2)); } } else if self.pos > j { let left = self.pos - j; let right = j + W - self.pos; if left <= right { let dx = left; let dy = i + 1; if dy as isize - dx as isize - h <= 0 { continue; } targets.push((h, Reverse(p), left, 1)); } else { let dx = right; let dy = i + 1; if dy as isize - dx as isize - h <= 0 { continue; } targets.push((h, Reverse(p), right, 2)); } } else { let dy = i + 1; if dy as isize - h <= 0 { continue; } targets.push((h, Reverse(p), 0, 0)); } } } targets.sort(); targets } fn update_field(&mut self, dir: usize) { if dir == 1 { self.pos = (W + self.pos - 1) % W; } else if dir == 2 { self.pos = (self.pos + 1) % W; } for i in 1..H { if self.enemy[i][self.pos] != (0, 0) { let level = (1 + self.S / 100) as isize; let (h, p) = self.enemy[i][self.pos]; if h - level <= 0 { self.S += p; self.enemy[i][self.pos] = (0, 0); } else { self.enemy[i][self.pos] = (h - level, p); } break; } } } fn calc_score(&self, dir: usize) -> isize { let mut next = self.pos; if dir == 1 { next = (W + next - 1) % W; } else if dir == 2 { next = (next + 1) % W; } if self.enemy[0][next] != (0, 0) { return std::isize::MIN; } else { for i in 1..H { if self.enemy[i][next] != (0, 0) { let level = (1 + self.S / 100) as isize; let (h, p) = self.enemy[i][next]; if h - level <= 0 { return level + p as isize; } else if i == 1 { return std::isize::MIN; } else { return level; } } } } -1 } fn is_done(&self) -> bool { self.turn == TURN } fn output(&self, dir: usize) { if dir == 0 { println!("S"); } else if dir == 1 { println!("L"); } else { println!("R"); } } } #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { let mut state = State::new(); while !state.is_done() { let N: isize = read(); if N == -1 { return; } let mut HPX = vec![]; for _ in 0..N { let v: Vec = read_vec(); let h = v[0]; let p = v[1]; let x = v[2]; HPX.push((h, p, x)); } state.update_enemy(HPX); let mut scores = vec![]; for dir in 0..3 { scores.push((state.calc_score(dir), Reverse(dir))); } scores.sort(); scores.reverse(); let Reverse(dir) = scores[0].1; state.update_field(dir); state.turn += 1; state.output(dir); } } } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() }