#line 2 "template/template.hpp" using namespace std; #include #line 1 "template/inout.hpp" namespace noya2 { template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } void in() {} template void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector dx = {0,1,0,-1,1,1,-1,-1}; const vector dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 1 "template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); int m = __builtin_ctzll(b); a >>= n; b >>= m; while (a != b) { int m = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> m; } return a << min(n, m); } template T gcd_fast(T a, T b){ return static_cast(inner_binary_gcd(abs(a),abs(b))); } template T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast((n ^ d) < 0 && n % d != 0); } template T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast((n ^ d) >= 0 && n % d != 0); } template void uniq(vector &v){ sort(all(v)); v.erase(unique(all(v)),v.end()); } template inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair; using pll = pair; using pil = pair; using pli = pair; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "graph/Graph_core.hpp" #line 4 "graph/Graph_core.hpp" namespace noya2 { struct naiveGraph { // undirected unweighted tree naiveGraph (int _n = 0) : n(_n){ es0.resize(n); es1.resize(n); _vis.resize(n,0); } void add_edge(int u, int v, bool undirect = true, int id = -1){ es0[u].emplace_back(v); es1[u].emplace_back(v,id); if (undirect){ es0[v].emplace_back(u); es1[v].emplace_back(u,id); } } void input(int m, int _indexed = 1, bool undirect = true){ rep(i,m){ int u, v; in(u,v); u -= _indexed; v -= _indexed; add_edge(u,v,undirect,i); } } bool yet(int v){ return _vis[v] == 0; } void visit(int v) { _vis[v]++; } void reset(int v = -1){ if (v == -1) fill(all(_vis),0); else _vis[v] = 0; } const vector& operator[](int idx) const { return es0[idx]; } const vector>& operator()(int idx) const {return es1[idx]; } private: int n; vector> es0; vector>> es1; vector _vis; }; struct usefulGraph { // directed weighted graph usefulGraph (int _n = 0) : n(_n){ es.resize(n); _vis.resize(n,0); } void add_edge(int u, int v, bool undirect = true, ll cost = 1){ es[u].emplace_back(v,cost); if (undirect){ es[v].emplace_back(u,cost); } } void input(int m, int _indexed = 1, bool undirect = true){ rep(i,m){ int u, v; in(u,v); ll cost; in(cost); u -= _indexed; v -= _indexed; add_edge(u,v,undirect,cost); } } bool yet(int v){ return _vis[v] == 0; } void visit(int v) { _vis[v]++; } void reset(int v = -1){ if (v == -1) fill(all(_vis),0); else _vis[v] = 0; } vector dijkstra(int s){ // all edge weight >= 0 vector dist(n,linf); dist[s] = 0LL; priority_queue,greater> pque; pque.push(pli(0,s)); while (!pque.empty()){ auto [d, f] = pque.top(); pque.pop(); if (dist[f] < d) continue; for (auto [t, cost] : es[f]){ if (chmin(dist[t],d+cost)){ pque.push(pli(dist[t],t)); } } } return dist; } vector reconstruct(int s, int t, const vector &dist){ if (dist[t] == linf) return {}; vector froms(n,-1); queue que; que.push(s); froms[s] = s; while (!que.empty()){ int v = que.front(); que.pop(); for (auto [u, cost] : es[v]){ if (froms[u] == -1 && dist[v] + cost == dist[u]){ froms[u] = v; que.push(u); } } } vector ans = {t}; while (t != s){ t = froms[t]; ans.emplace_back(t); } reverse(all(ans)); return ans; } vector bfs01(int s){ // all edge weight = 0 or 1 vector dist(n,linf); dist[s] = 0; deque que; que.push_back(s); while (!que.empty()){ auto f = que.front(); que.pop_front(); for (auto [t, cost] : es[f]){ if (chmin(dist[t],dist[f]+cost)){ if (cost == 0) que.push_front(t); else que.push_back(t); } } } return dist; } vector bellman_ford(int s, bool &ng_cycle){ vector dist(n,linf); vector ng; dist[s] = 0; int tm = 0; while (tm < n){ bool finish = true; for (int f = 0; f < n; f++){ if (dist[f] == linf) continue; for (auto [t, cost] : es[f]){ if (chmin(dist[t],dist[f]+cost)){ finish = false; if (tm == n-1) ng.emplace_back(t); } } } if (finish) break; tm++; } ng_cycle = (tm == n); if (ng_cycle){ for (auto v : ng) dist[v] = -linf; tm = n; while (tm--){ for (int f = 0; f < n; f++){ if (dist[f] != -linf) continue; for (auto e : es[f]){ dist[e.first] = -linf; } } } } return dist; } vector> warshall_floyd(){ vector> res(n,vector(n,linf)); rep(i,n){ res[i][i] = 0; for (auto [t, cost] : es[i]){ chmin(res[i][t],cost); } } rep(k,n) rep(i,n) rep(j,n){ chmin(res[i][j],res[i][k]+res[k][j]); } return res; } const vector>& operator[](int idx) const { return es[idx]; } private: int n; vector>> es; vector _vis; }; } // namespace noya2 #line 4 "c.cpp" void solve(){ int n, m; in(n,m); ll x; in(x); naiveGraph g(n); vector a(m), b(m); rep(i,m){ int u, v; in(u,v,a[i],b[i]); u--, v--; g.add_edge(u,v,true,i); } auto check = [&](ll w){ vector dist(n,linf); dist[0] = 0; priority_queue,greater> pque; pque.push(pli(0,0)); while (!pque.empty()){ auto [d, f] = pque.top(); pque.pop(); if (dist[f] < d) continue; for (auto [t, i] : g(f)){ if (b[i] < w) continue; if (chmin(dist[t],d+a[i])){ pque.push(pli(dist[t],t)); } } } return dist[n-1] <= x; }; ll le = -1, ri = iinf; while (ri - le > 1){ ll md = (le + ri) / 2; if (check(md)) le = md; else ri = md; } out(le); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }