use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } fn get() -> T { get_word().parse().ok().unwrap() } // Lazy Segment Tree Beats. // Reference: https://rsm9.hatenablog.com/entry/2021/02/01/220408 pub trait ActionRing { type T: Clone + Copy; // data type U: Clone + Copy + PartialEq + Eq; // action fn biop(x: Self::T, y: Self::T) -> Self::T; fn update(x: Self::T, a: Self::U) -> (Self::T, bool /* fail */); fn upop(fst: Self::U, snd: Self::U) -> Self::U; fn e() -> Self::T; fn upe() -> Self::U; // identity for upop } pub struct LazySegTreeBeats { n: usize, dep: usize, dat: Vec, lazy: Vec, } impl LazySegTreeBeats { pub fn new(n_: usize) -> Self { let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 LazySegTreeBeats { n: n, dep: dep, dat: vec![R::e(); 2 * n], lazy: vec![R::upe(); n], } } #[allow(unused)] pub fn with(a: &[R::T]) -> Self { let mut ret = Self::new(a.len()); let n = ret.n; for i in 0..a.len() { ret.dat[n + i] = a[i]; } for i in (1..n).rev() { ret.update_node(i); } ret } #[inline] pub fn set(&mut self, idx: usize, x: R::T) { debug_assert!(idx < self.n); self.apply_any(idx, |_t| x); } pub fn apply_any R::T>(&mut self, idx: usize, f: F) { debug_assert!(idx < self.n); let idx = idx + self.n; for i in (1..self.dep + 1).rev() { self.push(idx >> i); } self.dat[idx] = f(self.dat[idx]); for i in 1..self.dep + 1 { self.update_node(idx >> i); } } pub fn get(&mut self, idx: usize) -> R::T { debug_assert!(idx < self.n); let idx = idx + self.n; for i in (1..self.dep + 1).rev() { self.push(idx >> i); } self.dat[idx] } /* [l, r) (note: half-inclusive) */ #[inline] pub fn query(&mut self, rng: std::ops::Range) -> R::T { let (l, r) = (rng.start, rng.end); debug_assert!(l <= r && r <= self.n); if l == r { return R::e(); } let mut l = l + self.n; let mut r = r + self.n; for i in (1..self.dep + 1).rev() { if ((l >> i) << i) != l { self.push(l >> i); } if ((r >> i) << i) != r { self.push((r - 1) >> i); } } let mut sml = R::e(); let mut smr = R::e(); while l < r { if (l & 1) != 0 { sml = R::biop(sml, self.dat[l]); l += 1; } if (r & 1) != 0 { r -= 1; smr = R::biop(self.dat[r], smr); } l >>= 1; r >>= 1; } R::biop(sml, smr) } /* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */ #[inline] pub fn update(&mut self, rng: std::ops::Range, f: R::U) { let (l, r) = (rng.start, rng.end); debug_assert!(l <= r && r <= self.n); if l == r { return; } let mut l = l + self.n; let mut r = r + self.n; for i in (1..self.dep + 1).rev() { if ((l >> i) << i) != l { self.push(l >> i); } if ((r >> i) << i) != r { self.push((r - 1) >> i); } } { let l2 = l; let r2 = r; while l < r { if (l & 1) != 0 { self.all_apply(l, f); l += 1; } if (r & 1) != 0 { r -= 1; self.all_apply(r, f); } l >>= 1; r >>= 1; } l = l2; r = r2; } for i in 1..self.dep + 1 { if ((l >> i) << i) != l { self.update_node(l >> i); } if ((r >> i) << i) != r { self.update_node((r - 1) >> i); } } } #[inline] fn update_node(&mut self, k: usize) { self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]); } fn all_apply(&mut self, k: usize, f: R::U) { let (dat, fail) = R::update(self.dat[k], f); self.dat[k] = dat; if k < self.n { self.lazy[k] = R::upop(self.lazy[k], f); if fail { self.push(k); self.update_node(k); } } } fn push(&mut self, k: usize) { let val = self.lazy[k]; self.all_apply(2 * k, val); self.all_apply(2 * k + 1, val); self.lazy[k] = R::upe(); } } fn gcd(mut x: i64, mut y: i64) -> i64 { while y != 0 { let r = x % y; x = y; y = r; } x } enum Affine {} type AffineInt = i64; // Change here to change type const INF: i64 = 1 << 40; impl ActionRing for Affine { type T = (AffineInt, AffineInt, AffineInt, AffineInt); // data, size, max, lcm type U = Result; // action, Ok(g): x |-> gcd(x, g), Err(v): _x |-> v fn biop((x, s, ma1, lcm1): Self::T, (y, t, ma2, lcm2): Self::T) -> Self::T { let l = if lcm1 >= INF || lcm2 >= INF { INF } else { let g = gcd(lcm1, lcm2); std::cmp::min((lcm1 / g).saturating_mul(lcm2), INF) }; (x + y, s + t, std::cmp::max(ma1, ma2), l) } // Complexity note: potential = ma * s == x ? 0 : sum of num of factors(values) // (ma * s == x is necessary because without this condition one range_assign can increase potential by N log_2(val)) // If update fails, potential decreases by >= 1. fn update((x, s, ma, lcm): Self::T, up: Self::U) -> (Self::T, bool) { let g = match up { Ok(g) => g, Err(v) => return ((v * s, s, v, v), false), }; if g == 0 { return ((x, s, ma, lcm), false); } if x == s * ma { // All elements are equal. Cannot fail. let newval = gcd(ma, g); return ((newval * s, s, newval, newval), false); } if lcm < INF && g % lcm == 0 { // NOP return ((x, s, ma, lcm), false); } ((x, s, ma, lcm), true) } fn upop(fst: Self::U, snd: Self::U) -> Self::U { let g2 = match snd { Ok(g) => g, Err(_) => return snd, }; match fst { Ok(g) => Ok(gcd(g, g2)), Err(v) => Err(gcd(g2, v)), } } fn e() -> Self::T { (0.into(), 0.into(), 0.into(), 1.into()) } fn upe() -> Self::U { // identity for upop Ok(0) } } // Tags: segment-tree-beats fn main() { let n: usize = get(); let q: usize = get(); let a: Vec<_> = (0..n).map(|_| { let x: i64 = get(); (x, 1, x, x) }).collect(); let mut st = LazySegTreeBeats::::with(&a); for _ in 0..q { let ty: i32 = get(); let l = get::() - 1; let r: usize = get(); if ty == 1 || ty == 2 { let x: i64 = get(); if ty == 1 { st.update(l..r, Err(x)); } else { st.update(l..r, Ok(x)); } } else { let val = st.query(l..r); println!("{}", if ty == 3 { val.2 } else { val.0 }); } } }