#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(clippy::type_complexity)] #![allow(clippy::needless_range_loop)] #![allow(dead_code)] use std::{ cmp::Reverse, collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque}, }; mod rnd { static mut S: usize = 0; static MAX: usize = 1e9 as usize; #[inline] pub fn init(seed: usize) { unsafe { if seed == 0 { let t = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap() .as_secs() as usize; S = t } else { S = seed; } } } #[inline] pub fn gen() -> usize { unsafe { if S == 0 { init(0); } S ^= S << 7; S ^= S >> 9; S } } #[inline] pub fn gen_range(a: usize, b: usize) -> usize { gen() % (b - a) + a } #[inline] pub fn gen_bool() -> bool { gen() & 1 == 1 } #[inline] pub fn gen_range_isize(a: usize) -> isize { let mut x = (gen() % a) as isize; if gen_bool() { x *= -1; } x } #[inline] pub fn gen_range_neg_wrapping(a: usize) -> usize { let mut x = gen() % a; if gen_bool() { x = x.wrapping_neg(); } x } #[inline] pub fn gen_float() -> f64 { ((gen() % MAX) as f64) / MAX as f64 } } #[derive(Debug, Clone)] struct TimeKeeper { start_time: std::time::Instant, time_threshold: f64, } impl TimeKeeper { fn new(time_threshold: f64) -> Self { TimeKeeper { start_time: std::time::Instant::now(), time_threshold, } } #[inline] fn isTimeOver(&self) -> bool { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 >= self.time_threshold } #[cfg(not(feature = "local"))] { elapsed_time >= self.time_threshold } } #[inline] fn get_time(&self) -> f64 { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 } #[cfg(not(feature = "local"))] { elapsed_time } } } const H: usize = 60; const W: usize = 25; const TURN: usize = 1000; const INF: isize = 1 << 60; #[derive(Debug, Clone)] struct State { pos: (usize, usize), S: usize, field: Vec>, turn: usize, } impl State { fn new() -> Self { State { pos: (12, 0), S: 0, field: vec![vec![(0, 0); W]; H + TURN + 10], turn: 0, } } fn update_field(&mut self, n: usize) { let y = H + self.turn; for _ in 0..n { let v: Vec = read_vec(); let h = v[0] as isize; let p = v[1]; let x = v[2]; self.field[y][x] = (h, p); } } fn check_front_enemy(&self) -> bool { let (now_x, now_y) = self.pos; for y in now_y + 1..H + TURN + 10 { if self.field[y][now_x] != (0, 0) { let (h, _) = self.field[y][now_x]; let dy = y - now_y; let level = (1 + self.S / 100) as isize; let t = (h + level - 1) / level; // t >= 1, dy >= 2 // dy = 1 => Game over return dy > t as usize; } } false } fn check_left_enemy(&self) -> isize { let (now_x, now_y) = self.pos; let x = (W + now_x - 1) % W; for y in now_y + 1..H + TURN + 10 { if self.field[y][x] != (0, 0) { let (h, _) = self.field[y][x]; let dy = y - now_y; let level = (1 + self.S / 100) as isize; let t = (h + level - 1) / level; if dy <= t as usize { return INF + 1; } else { return t; } } } INF } fn check_right_enemy(&self) -> isize { let (now_x, now_y) = self.pos; let x = (now_x + 1) % W; for y in now_y + 1..H + TURN + 10 { if self.field[y][x] != (0, 0) { let (h, _) = self.field[y][x]; let dy = y - now_y; let level = (1 + self.S / 100) as isize; let t = (h + level - 1) / level; if dy <= t as usize { return INF + 1; } else { return t; } } } INF } fn judge_collision_left(&self, d: usize) -> bool { let (now_x, now_y) = self.pos; self.field[now_y + d][(W + now_x - d) % W] != (0, 0) } fn judge_collision_right(&self, d: usize) -> bool { let (now_x, now_y) = self.pos; self.field[now_y + d][(now_x + d) % W] != (0, 0) } fn advance(&mut self, action: isize) { self.pos.1 += 1; self.pos.0 = (W as isize + action + self.pos.0 as isize) as usize % W; self.attack(); self.turn += 1; self.output(action); } fn attack(&mut self) { let (now_x, now_y) = self.pos; let x = now_x; for y in now_y + 1..H + TURN + 10 { if self.field[y][x] != (0, 0) { let (h, p) = self.field[y][x]; let level = (1 + self.S / 100) as isize; if h - level <= 0 { self.S += p; self.field[y][x] = (0, 0); } else { self.field[y][x].0 -= level; } return; } } } fn is_done(&self) -> bool { self.turn == TURN } fn output(&self, action: isize) { if action == 0 { println!("S"); } else if action == -1 { println!("L"); } else { println!("R"); } } } #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { let mut state = State::new(); #[cfg(feature = "local")] { eprintln!("Local Mode"); let _: Vec = read_vec(); } while !state.is_done() { let N: isize = read(); if N == -1 { return; } state.update_field(N as usize); if state.check_front_enemy() || (state.judge_collision_left(1) && state.judge_collision_right(1)) { state.advance(0); } else if state.judge_collision_left(1) { state.advance(1); } else if state.judge_collision_right(1) { state.advance(-1); } else { let left = state.check_left_enemy(); let right = state.check_right_enemy(); if left == right { state.advance(1); } else if left < right { state.advance(-1); } else { state.advance(1); } } } } } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() }