#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; double EPS = 1e-15; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【任意数列の列挙(要素ごと上限指定)】O(Πub[0..n)) /* * 数列 a[0..n) で,∀i, a[i] ∈ [0..ub[i]) を満たすもの全てを格納したリストを返す. */ vvi enumerate_all_sequences(const vi& ub) { // verify : https://atcoder.jp/contests/arc104/tasks/arc104_e int n = sz(ub); vvi seqs; vi seq; // 作成途中の列 int i = 0; // 列の長さ function rf = [&]() { // 完成していれば記録する. if (i == n) { seqs.push_back(seq); return; } rep(x, ub[i]) { seq.push_back(x); i++; rf(); seq.pop_back(); i--; } }; rf(); return seqs; } mint naive(int n, ll m, int K) { vi ub(n * m, K); auto seqs = enumerate_all_sequences(ub); map a1_to_cnt; vm cnt(K + 1); repe(a, seqs) { bool ok = true; rep(i, n) rep(j, m - 1) if (a[i * m + j] == a[i * m + (j + 1)]) ok = false; rep(i, n - 1) rep(j, m) if (a[i * m + j] == a[(i + 1) * m + j]) ok = false; // dump(a, ok); auto b(a); uniq(b); if (ok) { cnt[sz(b)]++; // a1_to_cnt[a[1] == a[5]]++; } } // dump(cnt); // dumpel(a1_to_cnt); return cnt[K]; } //【正方行列(固定サイズ)】 /* * Fixed_matrix() : O(n^2) * T の要素を成分にもつ n×n 零行列で初期化する. * * Fixed_matrix(bool identity = true) : O(n^2) * T の要素を成分にもつ n×n 単位行列で初期化する. * * Fixed_matrix(vvT a) : O(n^2) * 二次元配列 a[0..n)[0..n) の要素で初期化する. * * A + B : O(n^2) * n×n 行列 A, B の和を返す.+= も使用可. * * A - B : O(n^2) * n×n 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n^2) * n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n^2) * n×n 行列 A と n 次元列ベクトル array x の積を返す. * * x * A : O(n^2) * n 次元行ベクトル array x と n×n 行列 A の積を返す. * * A * B : O(n^3) * n×n 行列 A と n×n 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template struct Fixed_matrix { array, n> v; // 行列の成分 // n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する. Fixed_matrix(bool identity = false) { rep(i, n) v[i].fill(T(0)); if (identity) rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..n) の要素で初期化する. Fixed_matrix(const vector>& a) { // verify : https://yukicoder.me/problems/no/1000 Assert(sz(a) == n && sz(a[0]) == n); rep(i, n) rep(j, n) v[i][j] = a[i][j]; } // 代入 Fixed_matrix(const Fixed_matrix&) = default; Fixed_matrix& operator=(const Fixed_matrix&) = default; // アクセス inline array const& operator[](int i) const { return v[i]; } inline array& operator[](int i) { return v[i]; } // 入力 friend istream& operator>>(istream& is, Fixed_matrix& a) { rep(i, n) rep(j, n) is >> a[i][j]; return is; } // 比較 bool operator==(const Fixed_matrix& b) const { return v == b.v; } bool operator!=(const Fixed_matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Fixed_matrix& operator+=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] += b[i][j]; return *this; } Fixed_matrix& operator-=(const Fixed_matrix& b) { rep(i, n) rep(j, n) v[i][j] -= b[i][j]; return *this; } Fixed_matrix& operator*=(const T& c) { rep(i, n) rep(j, n) v[i][j] *= c; return *this; } Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; } Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; } Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; } friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; } Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); } // 行列ベクトル積 : O(n^2) array operator*(const array& x) const { array y{ 0 }; rep(i, n) rep(j, n) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(n^2) friend array operator*(const array& x, const Fixed_matrix& a) { array y{ 0 }; rep(i, n) rep(j, n) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Fixed_matrix operator*(const Fixed_matrix& b) const { // verify : https://yukicoder.me/problems/no/1000 Fixed_matrix res; rep(i, n) rep(j, n) rep(k, n) res[i][j] += v[i][k] * b[k][j]; return res; } Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Fixed_matrix pow(ll d) const { Fixed_matrix res(true), pow2(*this); while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Fixed_matrix& a) { rep(i, n) { os << "["; rep(j, n) os << a[i][j] << " ]"[j == n - 1]; if (i < n - 1) os << "\n"; } return os; } #endif }; //【階乗など(法が大きな素数)】 /* * Factorial_mint(int N) : O(n) * N まで計算可能として初期化する. * * mint fact(int n) : O(1) * n! を返す. * * mint fact_inv(int n) : O(1) * 1/n! を返す(n が負なら 0 を返す) * * mint inv(int n) : O(1) * 1/n を返す. * * mint perm(int n, int r) : O(1) * 順列の数 nPr を返す. * * mint bin(int n, int r) : O(1) * 二項係数 nCr を返す. * * mint mul(vi rs) : O(|rs|) * 多項係数 nC[rs] を返す.(n = Σrs) */ class Factorial_mint { int n_max; // 階乗と階乗の逆数の値を保持するテーブル vm fac, fac_inv; public: // n! までの階乗とその逆数を前計算しておく.O(n) Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b fac[0] = 1; repi(i, 1, n) fac[i] = fac[i - 1] * i; fac_inv[n] = fac[n].inv(); repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1); } Factorial_mint() : n_max(0) {} // ダミー // n! を返す. mint fact(int n) const { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b Assert(0 <= n && n <= n_max); return fac[n]; } // 1/n! を返す(n が負なら 0 を返す) mint fact_inv(int n) const { // verify : https://atcoder.jp/contests/abc289/tasks/abc289_h Assert(n <= n_max); if (n < 0) return 0; return fac_inv[n]; } // 1/n を返す. mint inv(int n) const { // verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d Assert(0 < n && n <= n_max); return fac[n - 1] * fac_inv[n]; } // 順列の数 nPr を返す. mint perm(int n, int r) const { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[n - r]; } // 二項係数 nCr を返す. mint bin(int n, int r) const { // verify : https://atcoder.jp/contests/abc034/tasks/abc034_c Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[r] * fac_inv[n - r]; } // 多項係数 nC[rs] を返す. mint mul(const vi& rs) const { // verify : https://yukicoder.me/problems/no/2141 if (*min_element(all(rs)) < 0) return 0; int n = accumulate(all(rs), 0); Assert(n <= n_max); mint res = fac[n]; repe(r, rs) res *= fac_inv[r]; return res; } }; //【下位メビウス変換(大きさ依存,最大元)】O(N) /* * [0..N) 上の集合関数 f(S) の下位集合からの累積和 * g(S) = ΣT⊂S f(T) (S : [0..N) の部分集合) * が S の大きさ |S| のみに依存する関数 g[|S|] を用いて * g(S) = g[|S|] * と書けるとする.与えられた g[0..N] に対応する f([0..N)) を返す. * * 具体的には * f([0..N)) = Σk⊂[0..N] (-1)^(N-k) bin(N,k) g[k] * で表される. * * 制約:fm は N! まで計算可能 */ mint set_submobius_size_top(const vm& g, const Factorial_mint& fm) { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e int N = sz(g) - 1; mint f0; repi(k, 0, N) f0 += ((N - k) % 2 ? -1 : 1) * fm.bin(N, k) * g[k]; return f0; } int main() { input_from_file("input.txt"); // output_to_file("output.txt"); int n; ll m; int K; cin >> n >> m >> K; dump(n, m, K); dump("-----"); dump(naive(n, m, K)); dump("----"); vm cnt(K + 1); if (n == 1) { repi(k, 0, K) { mint mat = 0; mat += mint(k - 1); mat = mat.pow(m - 1); mint vec = mint(k); vec = mat * vec; cnt[k] = vec; } } else if (n == 2) { repi(k, 0, K) { mint mat = 0; mat += mint(k - 2) * (k - 2); mat += mint(1) * (k - 1); mat = mat.pow(m - 1); mint vec = mint(k) * (k - 1); vec = mat * vec; cnt[k] = vec; } } else if (n == 3) { repi(k, 0, K) { // dump("---", k, "---"); Fixed_matrix mat; mat[0][0] += mint(k - 3) * (k - 4) * (k - 3); mat[0][0] += mint(k - 3) * (1) * (k - 3); mat[0][0] += mint(k - 3) * (1) * (k - 2); mat[0][0] += mint(1) * (k - 3) * (k - 3); mat[0][0] += mint(1) * (1) * (k - 3); mat[0][0] += mint(1) * (1) * (k - 2); mat[0][0] += mint(1) * (k - 3) * (k - 2); mat[0][0] += mint(1) * (1) * (k - 2); mat[1][0] += mint(k - 3) * (k - 4); mat[1][0] += mint(k - 3) * (1); mat[1][0] += mint(k - 3) * (1); mat[1][0] += mint(1) * (k - 3); mat[1][0] += mint(1) * (1); mat[1][0] += mint(1) * (1); mat[0][1] += mint(k - 2) * (k - 3) * (k - 3); mat[0][1] += mint(k - 2) * (1) * (k - 2); mat[0][1] += mint(1) * (k - 2) * (k - 3); mat[0][1] += mint(1) * (1) * (k - 2); mat[1][1] += mint(k - 2) * (k - 3); mat[1][1] += mint(k - 2) * (1); mat[1][1] += mint(1) * (k - 2); mat[1][1] += mint(1) * (1); // dump(mat); mat = mat.pow(m - 1); // dump(mat); array vec; vec[0] = mint(k) * (k - 1) * (k - 2); vec[1] = mint(k) * (k - 1); // dump(vec); vec = mat * vec; // dump(vec); cnt[k] = vec[0] + vec[1]; } } Factorial_mint fm(K); // dump(cnt); auto res = set_submobius_size_top(cnt, fm); cout << res << endl; }