#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(clippy::type_complexity)] #![allow(clippy::needless_range_loop)] #![allow(dead_code)] use std::{ cmp::Reverse, collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque}, }; mod rnd { static mut S: usize = 0; static MAX: usize = 1e9 as usize; #[inline] pub fn init(seed: usize) { unsafe { if seed == 0 { let t = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap() .as_secs() as usize; S = t } else { S = seed; } } } #[inline] pub fn gen() -> usize { unsafe { if S == 0 { init(0); } S ^= S << 7; S ^= S >> 9; S } } #[inline] pub fn gen_range(a: usize, b: usize) -> usize { gen() % (b - a) + a } #[inline] pub fn gen_bool() -> bool { gen() & 1 == 1 } #[inline] pub fn gen_range_isize(a: usize) -> isize { let mut x = (gen() % a) as isize; if gen_bool() { x *= -1; } x } #[inline] pub fn gen_range_neg_wrapping(a: usize) -> usize { let mut x = gen() % a; if gen_bool() { x = x.wrapping_neg(); } x } #[inline] pub fn gen_float() -> f64 { ((gen() % MAX) as f64) / MAX as f64 } } #[derive(Debug, Clone)] struct TimeKeeper { start_time: std::time::Instant, time_threshold: f64, } impl TimeKeeper { fn new(time_threshold: f64) -> Self { TimeKeeper { start_time: std::time::Instant::now(), time_threshold, } } #[inline] fn isTimeOver(&self) -> bool { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 >= self.time_threshold } #[cfg(not(feature = "local"))] { elapsed_time >= self.time_threshold } } #[inline] fn get_time(&self) -> f64 { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 1.5 } #[cfg(not(feature = "local"))] { elapsed_time } } } const H: usize = 60; const W: usize = 25; const TURN: usize = 1000; const INF: isize = 1 << 60; #[derive(Debug, Clone, Eq, PartialEq)] struct Player { x: usize, y: usize, } impl Player { fn new() -> Self { Player { x: 12, y: 0 } } fn move_(&mut self, action: isize) { self.y += 1; self.x = (W as isize + action + self.x as isize) as usize % W; } } #[derive(Debug, Clone, Eq, PartialEq)] struct Enemy { hp: isize, power: isize, init_hp: isize, x: usize, y: usize, } impl Enemy { fn new(init_hp: isize, power: isize, x: usize, y: usize) -> Self { Enemy { hp: init_hp, power, init_hp, x, y, } } } #[derive(Debug, Clone, Eq)] struct State { player: Player, S: isize, score: isize, evaluated_score: isize, enemies: Vec>, turn: usize, first_action: isize, is_dead: bool, } impl State { fn new() -> Self { State { player: Player::new(), S: 0, score: 0, evaluated_score: 0, enemies: vec![VecDeque::new(); W], turn: 0, first_action: 0, is_dead: false, } } fn update_enemy(&mut self, n: usize) { let y = H + self.turn; for _ in 0..n { let v: Vec = read_vec(); let h = v[0]; let p = v[1]; let x = v[2] as usize; let enemy = Enemy::new(h, p, x, y); self.enemies[x].push_back(enemy); } for x in 0..W { if self.enemies[x].is_empty() { continue; } if y - self.enemies[x][0].y == H { self.enemies[x].pop_front(); } } } fn get_level(&self) -> isize { 1 + self.S / 100 } fn advance(&mut self, action: isize) { self.player.move_(action); self.attack(); self.turn += 1; } fn attack(&mut self) { if self.enemies[self.player.x].is_empty() { return; } let level = self.get_level(); let enemy = &self.enemies[self.player.x][0]; if enemy.y == self.player.y { self.is_dead = true; return; } if enemy.y == self.player.y + 1 && enemy.hp > level { self.is_dead = true; return; } if enemy.hp <= level { self.score += enemy.init_hp; self.S += enemy.power; self.enemies[self.player.x].pop_front(); } else { self.enemies[self.player.x][0].hp -= level; } } fn evaluate_score(&mut self) { self.evaluated_score = self.S; } fn is_done(&self) -> bool { self.turn == TURN } fn output(&self, action: isize) { if action == 0 { println!("S"); } else if action == -1 { println!("L"); } else { println!("R"); } } } impl std::cmp::PartialEq for State { fn eq(&self, other: &Self) -> bool { self.evaluated_score == other.evaluated_score } } impl std::cmp::PartialOrd for State { fn partial_cmp(&self, other: &Self) -> Option { if self.evaluated_score == other.evaluated_score { Some(std::cmp::Ordering::Equal) } else if self.evaluated_score > other.evaluated_score { Some(std::cmp::Ordering::Greater) } else if self.evaluated_score < other.evaluated_score { Some(std::cmp::Ordering::Less) } else { None } } } impl std::cmp::Ord for State { fn cmp(&self, other: &Self) -> std::cmp::Ordering { if self.evaluated_score == other.evaluated_score { std::cmp::Ordering::Equal } else if self.evaluated_score > other.evaluated_score { std::cmp::Ordering::Greater } else { std::cmp::Ordering::Less } } } fn beam_search_action(state: &State, beam_width: usize, time_threshold: f64) -> State { let mut now_beam = BinaryHeap::new(); let mut best_state = state; now_beam.push(state.clone()); let time_keeper = TimeKeeper::new(time_threshold); let mut turn = 0; for t in 0.. { let mut next_beam = BinaryHeap::new(); turn = t + 1; for _ in 0..beam_width { if now_beam.is_empty() { break; } let now_state = now_beam.pop().unwrap(); let mut next_state_front = now_state.clone(); let mut next_state_left = now_state.clone(); let mut next_state_right = now_state.clone(); next_state_front.advance(0); next_state_front.evaluate_score(); next_state_left.advance(-1); next_state_left.evaluate_score(); next_state_right.advance(1); next_state_right.evaluate_score(); if t == 0 { next_state_front.first_action = 0; next_state_left.first_action = -1; next_state_right.first_action = 1; } if !next_state_front.is_dead { next_beam.push(next_state_front); } if !next_state_left.is_dead { next_beam.push(next_state_left); } if !next_state_right.is_dead { next_beam.push(next_state_right); } if time_keeper.isTimeOver() { break; } } now_beam = next_beam; best_state = now_beam.peek().unwrap(); if best_state.is_done() || time_keeper.isTimeOver() { break; } } // eprintln!("{}", turn); // best_state.first_action best_state.clone() } #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { let mut state = State::new(); #[cfg(feature = "local")] { eprintln!("Local Mode"); let _: Vec = read_vec(); } let start = std::time::Instant::now(); let time_threshold = 1.0 * 1e-3; // [sec] while !state.is_done() { let N: isize = read(); if N == -1 { return; } state.update_enemy(N as usize); let s = beam_search_action(&state, 10000, time_threshold); let action = s.first_action; state.advance(action); state.output(action); } eprintln!("Score: {}", state.score); eprintln!("S: {}", state.S); #[allow(unused_mut, unused_assignments)] let mut elapsed_time = start.elapsed().as_micros() as f64 * 1e-6; #[cfg(feature = "local")] { eprintln!("Local Mode"); elapsed_time *= 1.5; } eprintln!("Elapsed time: {}sec", elapsed_time); } } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() }