#ifdef DEBUG #define _GLIBCXX_DEBUG #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort ) #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define CERR( MESSAGE ) cerr << MESSAGE << endl; #define COUT( ANSWER ) cout << ANSWER << endl #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define LIBRARY_SEARCH if( LibrarySearch() != 0 ){ QUIT; }; #define START_WATCH( PROCESS_NAME ) StartWatch( PROCESS_NAME ) #define STOP_WATCH( HOW_MANY_TIMES ) StopWatch( HOW_MANY_TIMES ) #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define CERR( MESSAGE ) #define COUT( ANSWER ) cout << ANSWER << "\n" #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define LIBRARY_SEARCH #define START_WATCH( PROCESS_NAME ) #define STOP_WATCH( HOW_MANY_TIMES ) #endif // #define RANDOM_TEST #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) decay_t #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS_ ) #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void StartWatch( const string& process_name = "nothing" ); void StopWatch( const int& how_many_times = 1 ); #endif #if defined( DEBUG ) && defined( RANDOM_TEST ) inline CEXPR( int , bound_random_test_num , 1000 ); #define START_MAIN FOR( random_test_num , 0 , bound_random_test_num ){ CERR( "(" << random_test_num << ")" ); ll GetRand( const ll& Rand_min , const ll& Rand_max ); #define SET_ASSERT( A , MIN , MAX ) CERR( #A << " = " << ( A = GetRand( MIN , MAX ) ) ) #define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ( ANSWER ) << " == " << guchoku ); continue; } else { CERR( ( ANSWER ) << " != " << guchoku ); QUIT; } #define FINISH_MAIN CERR( "" ); } #else #define START_MAIN #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT #define FINISH_MAIN #endif template inline T Absolute( const T& a ){ return a > 0 ? a : -a; } template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same::value && ! is_same::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ static ll ANSWER[CONSTEXPR_LENGTH]; \ static ll ANSWER_INV[CONSTEXPR_LENGTH]; \ static ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索テンプレート // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ if( MINIMUM <= MAXIMUM ){ \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \ CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "二分探索成功" : "二分探索失敗" ) ); \ assert( EXPRESSION DESIRED_INEQUALITY TARGET ); \ } else { \ CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \ assert( MINIMUM <= MAXIMUM ); \ } \ // 単調増加の時にEXPRESSION >= TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調増加の時にEXPRESSION <= TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION >= TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION <= TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define ASK_NUMBER( ... ) \ CERR( "問題の区分は以下の中で何番に該当しますか?" ); \ problems = { __VA_ARGS__ }; \ problems_size = problems.size(); \ FOR( i , 0 , problems_size ){ \ CERR( i << ": " << problems[i] ); \ } \ cin >> num; \ CERR( "" ); \ if( num < 0 || num >= problems_size ){ \ CERR( "返答は" << problems_size - 1 << "以下の非負整数にしてください。" ); \ CERR( "終了します。" ); \ CERR( "" ); \ return -1; \ } \ num_temp = 0; \ #define ASK_YES_NO( QUESTION ) \ CERR( QUESTION << "[y/n]" ); \ cin >> reply; \ if( reply != "y" && reply != "n" ){ \ CERR( "y/nのいずれかで答えてください。" ); \ CERR( "終了します。" ); \ CERR( "" ); \ return -1; \ } \ CERR( "" ); \ #define SUB_LIBRARY_SEARCH( CLASS ) int CLASS ## LibrarySearch( int& num , int& num_temp , string& reply , vector& problems , int& problems_size ) #define CALL_SUB_LIBRARY_SEARCH( CLASS ) CLASS ## LibrarySearch( num , num_temp , reply , problems , problems_size ) SUB_LIBRARY_SEARCH( Function ); SUB_LIBRARY_SEARCH( Array );SUB_LIBRARY_SEARCH( SubarrayEnumeration ); SUB_LIBRARY_SEARCH( String ); SUB_LIBRARY_SEARCH( Permutation );SUB_LIBRARY_SEARCH( SubPermutation ); SUB_LIBRARY_SEARCH( Rectangle ); SUB_LIBRARY_SEARCH( Graph );SUB_LIBRARY_SEARCH( FunctionOnGraph ); SUB_LIBRARY_SEARCH( Probability ); SUB_LIBRARY_SEARCH( Game ); SUB_LIBRARY_SEARCH( Logic ); SUB_LIBRARY_SEARCH( Construction ); int LibrarySearch( int num = -1 ) { vector problems{}; int problems_size = 13; int num_temp = 0; string reply{}; if( num == -1 ){ ASK_YES_NO( "ライブラリーを探索しますか?" ); if( reply == "y" ){ CERR( "ライブラリーを探索します。" ); } else { CERR( "ライブラリーを探索せずに続行します。" ); CERR( "" ); return 0; } ASK_NUMBER( "数や関数に関する問題。" , "配列に関する問題。" , "文字列に関する問題。" , "順列に関する問題。" , "矩形領域に関する問題。" , "半順序/グラフに関する問題。" , "確率/期待値に関する問題。" , "ゲームに関する問題。" , "論理に関する問題。" , "構築問題。" ); } else { CERR( "" ); } if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Function ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Array ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( String ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Permutation ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Rectangle ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Graph ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Probability ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Game ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Logic ); } else if( num == num_temp++ ){ CALL_SUB_LIBRARY_SEARCH( Construction ); } CERR( "" ); CERR( "ライブラリー探索は以上です。終了します。" ); CERR( "" ); return -1; } SUB_LIBRARY_SEARCH( Function ) { ASK_YES_NO( "入力は1つの数か、1つの数と法を表す数ですか?" ); if( reply == "y" ){ CERR( "まずは小さい入力の場合を愚直に計算し、OEISで検索しましょう。" ); CERR( "https://oeis.org/?language=japanese" ); CERR( "" ); CERR( "次に出力の定義と等価な式を考察しましょう。" ); CERR( "- 単調ならば、冪乗や階乗" ); CERR( "- 定義にp進法が使われていれば、各種探索アルゴリズム" ); CERR( "- 入力が素数に近い場合に規則性があれば、p進付値、p進法、" ); CERR( " オイラー関数、約数の個数など" ); CERR( "を検討しましょう。" ); } else { ASK_NUMBER( "関数値の計算問題" , "求解問題。" , "最大化問題。" , "数え上げ問題。" , "序数問題。" ); if( num == num_temp++ ){ ASK_YES_NO( "関数の反復合成の計算問題ですか?" ); if( reply == "y" ){ ASK_NUMBER( "反復合成の計算問題。" , "反復合成による到達可能性問題。" ); if( num == num_temp++ ){ CERR( "定義域の要素数N、テストケース数T、反復回数の上限Kとします。" ); CERR( "- O((N + T)log_2 K)が通りそうならばダブリング" ); CERR( " \\Mathematics\\Function\\Iteration\\Doubling" ); CERR( "- O(TN)が通りそうならばループ検出" ); CERR( " \\Mathematics\\Function\\Iteration\\LoopDetection" ); CERR( "- O(N)すら通らなさそうならば関数の規則性を見付けるための実験" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "関数による遷移が定める有向グラフの問題に帰着させましょう。" ); CALL_SUB_LIBRARY_SEARCH( Graph ); } } else { ASK_YES_NO( "木やその他の半順序集合などのグラフ上の関数ですか?" ); if( reply == "y" ){ CALL_SUB_LIBRARY_SEARCH( FunctionOnGraph ); } else { CERR( "- 出力の定義と等価な式への変形" ); CERR( " - 和の順序交換" ); CERR( " - 同じ値になる項の纏め上げ" ); CERR( " - 二項展開や積の和典型などの組み合わせ論的解釈" ); CERR( " https://ei1333.hateblo.jp/entry/2021/07/30/144201" ); CERR( "- 和の動く範囲の差分に注目した動的計画法" ); CERR( "を検討しましょう。" ); } } } else if( num == num_temp++ ){ CERR( "- 単調関数は二分探索" ); CERR( "- 可微分関数はニュートン法" ); CERR( "- 一次関数は掃き出し法" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 凸関数は三分探索" ); CERR( "- 可微分関数は微分のニュートン法" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 変数の対称性があれば大小関係を制限した全探策" ); CERR( "- 何らかの約数となるなど動く範囲が狭い変数があればそれらを決め打った全探策" ); CERR( "- 多変数の合成関数で表せる場合は半分全列挙" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "集合Sを何らかの順序でソートした配列aに関する問題で、" ); CERR( "- 与えられた要素sが下から何番目かを答える場合は、非負整数iごとに" ); CERR( " 不等式a[i]<=sを判定する方法を考察し、iに関する二分探索" ); CERR( "- 与えられた非負整数iに対するa[i]を答える場合は、Sの要素sごとに" ); CERR( " 不等式a[i]<=sを判定する方法を考察し、sに関する二分探索" ); CERR( "を検討しましょう。" ); } CERR( "" ); CERR( "それらが間に合わない時は" ); CERR( "- 探索範囲を絞れそうな場合は全探策" ); CERR( "- 多変数の合成関数で表せる場合は半分全列挙" ); CERR( "を検討しましょう。" ); } CERR( "" ); ASK_YES_NO( "マルチテストケースですか?" ); if( reply == "y" ){ CERR( "テストケース全体でのNの総和に直接上限が与えられている問題では、" ); CERR( "ライブラリーの使用時は、配列の初期化が各テストケースに必要となる場合に" ); CERR( "TLEとなる可能性が高いです。適宜動的配列に置き換えましょう。" ); CERR( "" ); CERR( "配列を手元の環境でデバッグしやすくするためにstaticをつけている場合は" ); CERR( "テストケースを跨いで値が残ってしまわないように注意しましょう。" ); CERR( "" ); CERR( "前計算の候補としては" ); CERR( "- 素数列挙" ); CERR( "- 1つまたは複数の整数の約数列挙" ); CERR( "- オイラー関数の値の列挙" ); CERR( "- サブゴールとなる関係式を満たす解の列挙" ); CERR( "を検討しましょう。" ); } else { CERR( "入力が大きい場合と小さい場合で解法を変える考察を忘れないようにしましょう。" ); } return -1; } SUB_LIBRARY_SEARCH( Array ) { ASK_YES_NO( "入力に配列が与えられますか?" ); if( reply == "y" ){ ASK_NUMBER( "区間等の領域処理問題。" , "成分を受け取る関数の総和問題" , "部分列を受け取る関数の総和問題" , "その他の関数に関する問題。" , "隣接成分間関係式に関する問題。" ); if( num == num_temp++ ){ ASK_NUMBER( "可換群構造+を使う問題。" , "可換羃等モノイド構造∨を使う問題。" , "モノイド構造*を使う問題。" , "非結合的マグマ構造*を使う問題。" , "集合へのマグマ作用(*,\\cdot)を使う問題。" , "モノイドへのマグマ作用(+,\\cdot)を使う問題。" , "定数とのmaxを取った値の区間和取得を使う問題。" ); if( num == num_temp++ ){ CERR( "- 区間加算/区間取得が必要ならば可換群BIT" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template" ); CERR( "- 一点代入/一点加算/区間取得が必要ならば可換群平方分割" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template" ); CERR( "- 区間以外の領域で加算/全更新後の一点取得が必要ならば階差数列" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\Tree\\DifferenceSeqeuence" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 一点代入/区間加算/一点取得/区間取得が必要ならば可換羃等モノイドBIT" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\IntervalMax\\Template" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 一点代入/区間取得が必要ならばモノイドBIT" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template\\Monoid" ); CERR( "- 一点加算/区間加算/一点取得/区間取得が必要ならばモノイド平方分割" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Monoid" ); CERR( "- 一点代入/一点取得/区間取得が必要ならばモノイドセグメント木" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SegmentTree" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 写像のコード化" ); CERR( " \\Mathematics\\Function\\Encoder" ); CERR( "によりモノイドに帰着させることを検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 一点作用/区間作用/一点取得が必要ならば双対平方分割" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Dual" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "- 区間代入/区間作用/区間加算/一点取得/区間取得が必要な場合は遅延評価平方分割" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\LazyEvaluation" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "maxで全体更新でなく区間更新をする場合の汎用的な解法は分かりません。" ); CERR( "例えば区間が包含について単調でmaxを取る値も単調であれば全体更新と" ); CERR( "同様の処理ができます。状況に応じた考察をしましょう。" ); CERR( "" ); CERR( "maxで全体更新をする場合、maxを取る値は単調である場合に帰着できます。" ); CERR( "maxで全体更新をしない場合、つまりただmaxの区間和を処理するだけの場合、" ); CERR( "クエリの順番を入れ替えることができるので、単調な全体更新に帰着できます。" ); CERR( "従って以下では単調な全体更新の問題を考えます。" ); CERR( "" ); CERR( "maxを取る定数を変数化し、元の値との大小を表す{0,1}値の係数を考えます。" ); CERR( "すると区間作用前後の値は統一的にその係数と変数を使って表せます。" ); CERR( "配列の各成分の係数の値が変化するイベントとクエリをソートして管理し、" ); CERR( "クエリがイベントを跨ぐたびに係数を更新することを検討しましょう。" ); CERR( "" ); CERR( "例えばクエリB_qに対するmax(A_i,B_q)の区間和は、" ); CERR( "- 優先度つきキューA'={(A_i,i)|i}(構築O(N log N))" ); CERR( "- (B_q,q)_qをソートしたB'(構築O(Q log Q))" ); CERR( "- 長さNの数列C=(0,...,0)(構築O(N))" ); CERR( "を用意し、B'を前から探索して順に各クエリ(B_q,q)を処理します。" ); CERR( "具体的にはA'を前から探索して順にA_i=3かつ(n,L)=(2,2)で" ); CERR( "- Q(i)=「i=3」" ); CERR( "- R_0(b_0,b_1)=「b_0b_1」" ); CERR( "と表されます。" ); CERR( "" ); return -1; } SUB_LIBRARY_SEARCH( String ) { ASK_NUMBER( "部分列マッチング問題。" , "回文探索問題。" ); if( num == num_temp++ ){ CERR( "基本的には丁寧にループを回して解きましょう。" ); CERR( "- 比較対象が少ない場合、前または後ろから順に探索(貪欲法/動的計画法)" ); CERR( "- ワイルドカードを含む場合、" ); CERR( " - 前または後ろから順に場合分けをしてO(N)で処理できるか" ); CERR( " - 可能な代入方法を絞り込んでO(N)種類に落せるか" ); CERR( "- 比較回数が多い場合、ローリングハッシュ" ); CERR( " \\Utility\\String\\RollingHash" ); CERR( "- マッチングする文字列の最長化をする場合、Zアルゴリズム" ); CERR( " https://qiita.com/Pro_ktmr/items/16904c9570aa0953bf05" ); CERR( "- マッチングする文字数の最大化をする場合、文字の種類分の{0,1}値配列に" ); CERR( " 分けて内積の最大化(添え字を反転させて適当な法での畳み込み)" ); CERR( " \\Mathematics\\Arithmetic\\Mod" ); CERR( " \\Mathematics\\Polynomial" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "回文判定は長さに関して再帰的に計算できます。" ); CERR( "- O(N^2)が通る場合、愚直な再帰により前計算で全ての部分列の回文判定" ); CERR( "- O(N^2)が通らない場合、Manacherのアルゴリズムやローリングハッシュで前計算" ); CERR( " https://snuke.hatenablog.com/entry/2014/12/02/235837" ); CERR( "を検討しましょう。" ); } return -1; } SUB_LIBRARY_SEARCH( Permutation ) { ASK_NUMBER( "符号の問題。" , "転倒数の問題。" , "数列の部分順列の数え上げ問題。" ); if( num == num_temp++ ){ CERR( "- 符号そのものの計算問題は" ); CERR( " - O(N log_2 N)やO(N^2)が間に合いそうなら転倒数の計算" ); CERR( " - O(N log_2 N)が間に合わなさそうなら互換表示(O(N))" ); CERR( "- 符号と何かの積の和は行列式に帰着させ、" ); CERR( " - 行列式そのものなら行基本変形(O(N^3))" ); CERR( " - 余因子展開の途中の値が必要ならメモ化再帰(O(N 2^N))" ); CERR( "を検討しましょう。" ); } else if( num == num_temp++ ){ CERR( "1つの順列の転倒数は、" ); CERR( "- O(N^2)が通りそうならば愚直な二重ループ" ); CERR( "- O(N log_2 N)が通りそうならば可換群BIT" ); CERR( " \\Mathematics\\Combinatorial\\Permutation" ); CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT" ); CERR( "で計算しましょう。" ); CERR( "" ); CERR( "条件を満たす順列全体をわたる転倒数の総和/期待値は、" ); CERR( "各i > vertex{}; \ const int i_start = e_inv( t_start ); \ const int i_final = e_inv( t_final ); \ vertex.insert( pair( weight[i_start] = unit , i_start ) ); \ INITIALISE_PREV; \ \ while( ! vertex.empty() ){ \ \ auto itr_vertex = vertex.begin(); \ const pair v = *itr_vertex; \ const int& i = v.second; \ \ if( i == i_final ){ \ \ break; \ \ } \ \ const U& u = v.first; \ weight[i] = m_found; \ vertex.erase( itr_vertex ); \ const list > edge_i = E( e( i ) ); \ list > changed_vertex{}; \ \ for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \ \ const int& j = e_inv( itr_edge_i->first ); \ U& weight_j = weight[j]; \ \ if( weight_j != m_found ){ \ \ const U& edge_ij = itr_edge_i->second; \ const U temp = Addition( u , edge_ij ); \ assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \ \ if( weight_j > temp ){ \ \ if( weight_j != m_infty ){ \ \ vertex.erase( pair( weight_j , j ) ); \ \ } \ \ SET_PREV; \ changed_vertex.push_back( pair( weight_j = temp , j ) ); \ \ } \ \ } \ \ } \ \ for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \ \ vertex.insert( *itr_changed ); \ \ } \ \ } \ template > E(const T&) , int size_max> class DijkstraBody { private: int m_size; U m_infty; U m_found; int m_length; map m_memory; vector m_memory_inv; public: inline DijkstraBody( const int& size , const U& infty , const U& found ); // 経路が存在しない場合の返り値はm_infty U Solve( const T& t_start , const T& t_final ); U Solve( const T& t_start , const T& t_final , list& path ); const U& Infty() const; private: virtual const U& Unit() const = 0; virtual U Addition( const U& , const U& ) const = 0; virtual T e( const int& i ); virtual int e_inv( const T& t ); virtual void Reset(); }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分が0以上である。 // (2) 2^{31}-1がEの値の各成分の第2成分size_max個以下の和で表せるいかなる数よりも大きい。 // (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。 // が成り立つ場合にのみサポート。 // O((size+|E|)log size)で単一始点最短経路探索。 template > E(const int&) , int size_max> class Dijkstra : public DijkstraBody { public: inline Dijkstra( const int& size ); private: inline const ll& Unit() const; inline ll Addition( const ll& , const ll& ) const; inline int e( const int& i ); inline int e_inv( const int& t ); inline void Reset(); }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分がe_T()以上である。 // (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。 // (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。 // (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して順序モノイドである。 // (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。 // が成り立つ場合にのみサポート。 // O((size+|E|)(log size)^2)で単一始点最短経路探索。 template > E(const T&) , int size_max> class MemorisationDijkstra : public DijkstraBody { public: inline MemorisationDijkstra( const int& size , const U& infty = 2147483647 , const U& found = -1 ); private: inline const U& Unit() const; inline U Addition( const U& , const U& ) const; }; // 入力の範囲内で要件 // (1) Eの値の各成分の第2成分がe_T()以上である。 // (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。 // (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。 // (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して順序モノイドである。 // (5) (enum_T,enum_T_inv)が互いに逆写像である。 // (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。 // が成り立つ場合にのみサポート。 // O((size+|E|)log size)で単一始点最短経路探索。 template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> class EnumerationDijkstra : public DijkstraBody { public: inline EnumerationDijkstra( const int& size , const U& infty = 2147483647 , const U& found = -1 ); private: inline const U& Unit() const; inline U Addition( const U& , const U& ) const; inline T e( const int& i ); inline int e_inv( const T& t ); inline void Reset(); }; template > E(const T&) , int size_max> inline DijkstraBody::DijkstraBody( const int& size , const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) , m_length() , m_memory() , m_memory_inv() {} template > E(const int&) , int size_max> inline Dijkstra::Dijkstra( const int& size ) : DijkstraBody( size , 9223372036854775807 , -1 ) {} template > E(const T&) , int size_max> inline MemorisationDijkstra::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody( size , infty , found ) {} template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline EnumerationDijkstra::EnumerationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody( size , infty , found ) {} template > E(const T&) , int size_max> U DijkstraBody::Solve( const T& t_start , const T& t_final ) { DIJKSTRA_BODY( , ); Reset(); return weight[i_final]; } template > E(const T&) , int size_max> U DijkstraBody::Solve( const T& t_start , const T& t_final , list& path ) { DIJKSTRA_BODY( T prev[size_max] = {} , prev[j] = i ); int i = i_final; while( i != i_start ){ path.push_front( e( i ) ); i = prev[i]; } path.push_front( t_start ); Reset(); return weight[i_final]; } template > E(const T&) , int size_max> const U& DijkstraBody::Infty() const { return m_infty; } template > E(const int&) , int size_max> inline const ll& Dijkstra::Unit() const { static const ll unit = 0; return unit; } template > E(const T&) , int size_max> inline const U& MemorisationDijkstra::Unit() const { return e_U(); } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline const U& EnumerationDijkstra::Unit() const { return e_U(); } template > E(const int&) , int size_max> inline ll Dijkstra::Addition( const ll& u0 , const ll& u1 ) const { return u0 + u1; } template > E(const T&) , int size_max> inline U MemorisationDijkstra::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline U EnumerationDijkstra::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); } template > E(const T&) , int size_max> T DijkstraBody::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; } template > E(const int&) , int size_max> inline int Dijkstra::e( const int& i ) { return i; } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline T EnumerationDijkstra::e( const int& i ) { return enum_T( i ); } template > E(const T&) , int size_max> int DijkstraBody::e_inv( const T& t ) { if( m_memory.count( t ) == 0 ){ assert( m_length < m_size ); m_memory_inv.push_back( t ); return m_memory[t] = m_length++; } return m_memory[t]; } template > E(const int&) , int size_max> inline int Dijkstra::e_inv( const int& t ) { return t; } template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline int EnumerationDijkstra::e_inv( const T& t ) { return enum_T_inv( t ); } template > E(const T&) , int size_max> void DijkstraBody::Reset() { m_length = 0; m_memory.clear(); m_memory_inv.clear(); return; } template > E(const int&) , int size_max> inline void Dijkstra::Reset() {} template > E(const T&) , int size_max , T enum_T(const int&) , int enum_T_inv(const T&)> inline void EnumerationDijkstra::Reset() {} inline DEXPR( int , bound_N , 80 , 8 ); inline CEXPR( int , bound_M , bound_N ); inline CEXPR( int , bound_N_M , ( bound_N + bound_M ) * 2 ); inline CEXPR( int , size_max , bound_N * bound_M * bound_N_M ); list > e[size_max] = {}; inline list > E( const int& v ) { return e[v]; } int main() { UNTIE; LIBRARY_SEARCH; START_MAIN; CIN_ASSERT( N , 1 , bound_N ); CIN_ASSERT( M , 1 , bound_M ); CIN_ASSERT( K , 0 , N * M - 2 ); CEXPR( int , bound_T , 1000000000 ); CIN_ASSERT( T , 1 , bound_T ); int N_M = ( N + M ) * 2; int nm_max = ( N - 1 ) * ( M * N_M ) + ( M - 1 ) * N_M; FOR( k , 0 , K ){ CIN_ASSERT( A , 1 , N ); CIN_ASSERT( B , 1 , M ); CIN_ASSERT( C , 1 , bound_T ); CIN_ASSERT( D , 1 , bound_T ); int AB = --A * ( M * N_M ) + --B * N_M; C--; FOR( t , 0 , C ){ e[ AB + t ].push_back( { nm_max , D } ); } FOR( t , C , N_M ){ e[ AB + t ].push_back( { AB + t - C , D } ); } } int dn[4] = { -1 , 1 , 0 , 0 }; int dm[4] = { 0 , 0 , 1 , -1 }; FOR( n , 0 , N ){ FOR( m , 0 , M ){ int nm = n * ( M * N_M ) + m * N_M; FOR( d , 0 , 4 ){ int n_next = n + dn[d]; int m_next = m + dm[d]; if( 0 <= n_next && n_next < N && 0 <= m_next && m_next < M ){ int nm_next = n_next * ( M * N_M ) + m_next * N_M; FOR( t , 1 , N_M ){ e[ nm + t - 1 ].push_back( { nm_next + t , 0 } ); } } } } } FOR( t , 1 , N_M ){ e[ nm_max + t - 1 ].push_back( { nm_max + t , 0 } ); } Dijkstra dijkstra{ N * M * N_M }; ll answer = dijkstra.Solve( N + M , nm_max + min( T + N + M , N_M - 1 ) ); answer == dijkstra.Infty() ? answer = -1 : answer; COUT( ( answer ) ); FINISH_MAIN; QUIT; }