// start A.cpp // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using ull = unsigned long long; template using pq = priority_queue; template using qp = priority_queue, greater>; #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); #ifndef RIN__LOCAL #define endl "\n" #endif #define spa ' ' #define len(A) A.size() #define all(A) begin(A), end(A) #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) vector stoc(string &S) { int n = S.size(); vector ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } #define INT(...) \ int __VA_ARGS__; \ inp(__VA_ARGS__); #define LL(...) \ ll __VA_ARGS__; \ inp(__VA_ARGS__); #define STRING(...) \ string __VA_ARGS__; \ inp(__VA_ARGS__); #define CHAR(...) \ char __VA_ARGS__; \ inp(__VA_ARGS__); #define VEC(T, A, n) \ vector A(n); \ inp(A); #define VVEC(T, A, n, m) \ vector> A(n, vector(m)); \ inp(A); const ll MOD1 = 1000000007; const ll MOD9 = 998244353; template auto min(const T &a) { return *min_element(all(a)); } template auto max(const T &a) { return *max_element(all(a)); } template auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } void FLUSH() { cout << flush; } void print() { cout << endl; } template void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(forward(tail)...); } template void print(vector &A) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << ' '; } cout << endl; } template void print(vector> &A) { for (auto &row : A) print(row); } template void print(pair &A) { cout << A.first << spa << A.second << endl; } template void print(vector> &A) { for (auto &row : A) print(row); } template void prisep(vector &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template void priend(T A, S end) { cout << A << end; } template void priend(T A) { priend(A, spa); } template bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template void inp(T &...a) { (cin >> ... >> a); } template void inp(vector &A) { for (auto &a : A) cin >> a; } template void inp(vector> &A) { for (auto &row : A) inp(row); } template void inp(pair &A) { inp(A.first, A.second); } template void inp(vector> &A) { for (auto &row : A) inp(row.first, row.second); } template T sum(vector &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template vector compression(vector X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } vector> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector> edges(n, vector()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template vector>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector>> edges(n, vector>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template vector>> read_wtree(int n, int indexed = 1) { return read_wedges(n, n - 1, false, indexed); } inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // start other/Modint.hpp template struct Modint { int x; Modint() : x(0) {} Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Modint &operator+=(const Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Modint &operator-=(const Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Modint &operator*=(const Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Modint &operator/=(const Modint &p) { *this *= p.inverse(); return *this; } Modint &operator%=(const Modint &p) { assert(p.x == 0); return *this; } Modint operator-() const { return Modint(-x); } Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Modint operator++(int) { Modint result = *this; ++*this; return result; } Modint operator--(int) { Modint result = *this; --*this; return result; } friend Modint operator+(const Modint &lhs, const Modint &rhs) { return Modint(lhs) += rhs; } friend Modint operator-(const Modint &lhs, const Modint &rhs) { return Modint(lhs) -= rhs; } friend Modint operator*(const Modint &lhs, const Modint &rhs) { return Modint(lhs) *= rhs; } friend Modint operator/(const Modint &lhs, const Modint &rhs) { return Modint(lhs) /= rhs; } friend Modint operator%(const Modint &lhs, const Modint &rhs) { assert(rhs.x == 0); return Modint(lhs); } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const { return x != p.x; } bool operator<(const Modint &rhs) const { return x < rhs.x; } bool operator<=(const Modint &rhs) const { return x <= rhs.x; } bool operator>(const Modint &rhs) const { return x > rhs.x; } bool operator>=(const Modint &rhs) const { return x >= rhs.x; } Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); } return Modint(u); } Modint pow(int64_t k) const { Modint ret(1); Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Modint &p) { int64_t y; is >> y; p = Modint(y); return (is); } static int get_mod() { return MOD; } }; struct Arbitrary_Modint { int x; static int MOD; static void set_mod(int mod) { MOD = mod; } Arbitrary_Modint() : x(0) {} Arbitrary_Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) { *this *= p.inverse(); return *this; } Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) { assert(p.x == 0); return *this; } Arbitrary_Modint operator-() const { return Arbitrary_Modint(-x); } Arbitrary_Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Arbitrary_Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Arbitrary_Modint operator++(int) { Arbitrary_Modint result = *this; ++*this; return result; } Arbitrary_Modint operator--(int) { Arbitrary_Modint result = *this; --*this; return result; } friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) += rhs; } friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) -= rhs; } friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) *= rhs; } friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) /= rhs; } friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { assert(rhs.x == 0); return Arbitrary_Modint(lhs); } bool operator==(const Arbitrary_Modint &p) const { return x == p.x; } bool operator!=(const Arbitrary_Modint &p) const { return x != p.x; } bool operator<(const Arbitrary_Modint &rhs) { return x < rhs.x; } bool operator<=(const Arbitrary_Modint &rhs) { return x <= rhs.x; } bool operator>(const Arbitrary_Modint &rhs) { return x > rhs.x; } bool operator>=(const Arbitrary_Modint &rhs) { return x >= rhs.x; } Arbitrary_Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); } return Arbitrary_Modint(u); } Arbitrary_Modint pow(int64_t k) const { Arbitrary_Modint ret(1); Arbitrary_Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Arbitrary_Modint &p) { int64_t y; is >> y; p = Arbitrary_Modint(y); return (is); } static int get_mod() { return MOD; } }; int Arbitrary_Modint::MOD = 998244353; using modint9 = Modint<998244353>; using modint1 = Modint<1000000007>; using modint = Arbitrary_Modint; // end other/Modint.hpp // restart A.cpp using mint = modint; // start math/Matrix.hpp template struct Matrix { int n, m; vector> A; Matrix() = default; Matrix(int n, int m) : A(n, vector(m, 0)), n(n), m(m) {} Matrix(int n) : A(n, vector(n, 0)), n(n), m(n) {} Matrix(vector> A) : A(A), n(A.size()), m(A[0].size()) {} inline const vector &operator[](int k) const { return (A.at(k)); } inline vector &operator[](int k) { return (A.at(k)); } Matrix T() { Matrix B(m, n); for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) { B.A[i][j] = A[j][i]; } return B; } Matrix &operator+=(const Matrix &B) { assert(n == B.A.size()); assert(m == B.A[0].size()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { this->A[i][j] += B[i][j]; } return *this; } Matrix &operator-=(const Matrix &B) { assert(n == B.A.size()); assert(m == B.A[0].size()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { this->A[i][j] -= B[i][j]; } return *this; } Matrix &operator*=(const Matrix &B) { int k = B[0].size(); assert(m == B.A.size()); vector> C(n, vector(k, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < k; j++) { for (int l = 0; l < m; l++) { C[i][j] += this->A[i][l] * B[l][j]; } } swap(this->A, C); return *this; } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } type det() { auto arr = A; assert(n == m); type ret = 1; for (int i = 0; i < n; i++) { if (arr[i][i] == 0) { bool ng = true; for (int j = i + 1; j < n; j++) { if (arr[j][i] == 0) continue; swap(arr[i], arr[j]); ret *= -1; ng = false; break; } if (ng) return 0; } ret *= arr[i][i]; type inv = type(1) / arr[i][i]; for (int j = i; j < n; j++) arr[i][j] *= inv; for (int j = i + 1; j < n; j++) { type x = arr[j][i]; for (int k = i; k < n; k++) { arr[j][k] -= arr[i][k] * x; } } } return ret; } void I() { assert(n == m); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (i == j) A[i][j] = 1; else A[i][j] = 0; } } } Matrix inv() { assert(n == m); Matrix ret(n); ret.I(); auto &B = ret.A; auto arr = A; for (int j = 0; j < n; j++) { int ii = -1; for (int i = j; i < n; i++) { if (arr[i][j] != 0) { ii = i; break; } } if (ii == -1) { return {}; } swap(arr[j], arr[ii]); swap(B[j], B[ii]); ii = j; type inv = type(1) / arr[ii][j]; for (int jj = 0; jj < n; jj++) { B[ii][jj] *= inv; arr[ii][jj] *= inv; } for (int i = 0; i < n; i++) { if (i == ii) continue; type t = arr[i][j]; for (int jj = 0; jj < n; jj++) { arr[i][jj] -= arr[ii][jj] * t; B[i][jj] -= B[ii][jj] * t; } } } return ret; } }; template void inp(Matrix &M) { for (auto &row : M.A) inp(row); } template void print(Matrix &M) { for (auto &row : M.A) print(row); } // end math/Matrix.hpp // restart A.cpp void solve() { INT(P); mint::set_mod(P); INT(n, m); VVEC(mint, A, n, m); auto B = A; vec(int, used, n, -1); vec(int, lind, 0); int rank = 0; fori(j, m) { int ind = -1; fori(i, n) { if (used[i] == -1 && A[i][j] != 0) { ind = i; break; } } if (ind == -1) continue; used[ind] = rank++; lind.push_back(j); mint inv = mint(1) / A[ind][j]; fori(j, m) A[ind][j] *= inv; fori(i, n) { if (i == ind) continue; mint t = A[i][j]; fori(k, m) { A[i][k] -= t * A[ind][k]; } } } if (rank == 0) { rank++; used[0] = 0; lind.push_back(0); } if (rank * (n + m) > n * m) { print(1); print(n, m); print(B); return; } Matrix L(n, rank); Matrix R(rank, m); fori(j, rank) { fori(i, n) { L[i][j] = B[i][lind[j]]; } } fori(i, n) { if (used[i] == -1) continue; fori(j, m) { R[used[i]][j] = A[i][j]; } } print(2); print(n, rank); print(L); print(rank, m); print(R); auto X = L * R; fori(i, n) fori(j, m) { assert(B[i][j] == X[i][j]); } } int main() { cin.tie(0)->sync_with_stdio(0); // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while (t--) solve(); return 0; } // end A.cpp