""" Merculialist (1) 想定解 解説準拠ver """ import sys from sys import stdin def modfac(n, MOD): f = 1 factorials = [1] for m in range(1, n + 1): f *= m f %= MOD factorials.append(f) inv = pow(f, MOD - 2, MOD) invs = [1] * (n + 1) invs[n] = inv for m in range(n, 1, -1): inv *= m inv %= MOD invs[m - 1] = inv return factorials, invs def modnCr(n,r): if n < 0 or r < 0 or n < r: return 0 return fac[n] * inv[n-r] * inv[r] % mod def inverse(x): return pow(x,mod-2,mod) mod = 998244353 fac,inv = modfac(400000,mod) X,Y,Z,K = map(int,stdin.readline().split()) assert 1 <= X <= 10**5 assert 1 <= Y <= 10**5 assert 1 <= Z <= 10**5 assert 1 <= K <= 10**5 N = X+Y+Z # 全ての場合の数 all_case = (modnCr(N,X) * modnCr(N-X,Z) * fac[Y]) % mod # 生きている場合の数を数えあげる live_case = 0 for i in range(1,N+1): # i日目に最初にエリクシールを飲む場合 # エリクシールの置き方 xput = modnCr(N-i,X-1) yput = 1 if i-K >= 1: #解説参照 yput *= pow(N-i-X+K+1 , min(i-K,Y) , mod) if i-K < Y: L = N-X+1 - Y R = N-X+1 - max(0,i-K) - 1 yput *= fac[R] * inv[L-1] yput %= mod live_case += xput * yput live_case %= mod print (live_case * inverse(all_case) % mod)