use std::cmp::*; use std::collections::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // https://yukicoder.me/problems/no/1308 (3.5) // 愚直にやると O(N^2) 状態 O(N) 遷移/状態 なので無理。 // dp[i + 1][k] <--min--- dp[i][j] + dist(j, k) + C + dist(k, x[i+1]) という遷移になるが、min_k (dp[i][j] + dist(j, k)) の部分は bulk で O(N log N)-time で計算できる。 // dp[i + 1][k] <--min--- dpn[i] + dist(x[i], k) + dist(k, x[i+1]) // dpn[i + 1] <--min--- dp[i][k] + C + dist(k, x[i+1]) // dpn[i + 1] <--min--- dpn[i] + dist(x[i], x[i+1]) fn main() { input! { n: usize, q: usize, c: i64, uvl: [(usize1, usize1, i64); n - 1], x: [usize1; q], } let mut g = vec![vec![]; n]; for (u, v, l) in uvl { g[u].push((v, l)); g[v].push((u, l)); } const INF: i64 = 1 << 60; let mut dp = vec![INF; n]; let mut dpn = 0; for i in 1..q { let mut ep = vec![INF; n]; let mut epn = INF; let mut que = BinaryHeap::new(); for i in 0..n { que.push((Reverse(dp[i]), i)); } que.push((Reverse(dpn - c), x[i - 1])); while let Some((Reverse(d), v)) = que.pop() { if ep[v] <= d { continue; } ep[v] = d; for &(w, c) in &g[v] { que.push((Reverse(d + c), w)); } } let mut dist = vec![INF; n]; let mut que = VecDeque::new(); que.push_back((0, x[i])); while let Some((d, v)) = que.pop_front() { if dist[v] <= d { continue; } dist[v] = d; for &(w, c) in &g[v] { que.push_back((d + c, w)); } } for i in 0..n { ep[i] += c + dist[i]; epn = min(epn, dp[i] + c + dist[i]); } let distx = dist[x[i - 1]]; epn = min(epn, dpn + distx); for i in 0..n { ep[i] = min(ep[i], dp[i] + distx); } dp = ep; dpn = epn; } println!("{}", dpn); }