#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct MInt { unsigned int v; MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % mod() : x % mod() + mod()) {} static int get_mod() { return mod(); } static void set_mod(const int divisor) { mod() = divisor; } static void init(const int x) { inv(x); fact(x); fact_inv(x); } template static MInt inv(const int n) { // assert(0 <= n && n < mod() && std::gcd(x, mod()) == 1); static std::vector inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[mod() % i] * (mod() / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = mod(); b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector factorial{1}; const int prev = factorial.size(); if (n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector f_inv{1}; const int prev = f_inv.size(); if (n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) return 0; return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) return 0; inv(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if (std::cmp_greater_equal(v += x.v, mod())) v -= mod(); return *this; } MInt& operator-=(const MInt& x) { if (std::cmp_greater_equal(v += mod() - x.v, mod())) v -= mod(); return *this; } MInt& operator*=(const MInt& x) { v = static_cast(v) * x.v % mod(); return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } auto operator<=>(const MInt& x) const = default; MInt& operator++() { if (std::cmp_equal(++v, mod())) v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? mod() - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(v ? mod() - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } private: static int& mod() { static int divisor = 0; return divisor; } }; map, vector>> dp; vector> evenness(const vector& a) { if (const auto it = dp.find(a); it != dp.end()) return it->second; const int n = a.size(); vector> v; REP(bit, 1 << n) { int x = 0, y = 0; REP(i, n) { if (bit >> i & 1) { ++x; y += a[i]; } else { --x; y -= a[i]; } } v.emplace_back(x, y); } ranges::sort(v); v.erase(unique(ALL(v)), v.end()); return dp[a] = v; } void solve() { using ModInt = MInt<0>; int n, p; cin >> n >> p; ModInt::set_mod(p); vector a(n); REP(i, n) cin >> a[i]; if (n == 1) { cout << ModInt(a.front()) << '\n'; return; } const int d = a[1] - a[0]; if (d == 0) { cout << ModInt(2).pow(n - 1) * a.front() << '\n'; return; } ModInt ans = reduce(ALL(a), 0LL); FOR(bit, 3, 1 << n) { if (has_single_bit(static_cast(bit))) continue; vector b; REP(i, n) { if (bit >> i & 1) b.emplace_back(i); } const int f = a[b.front()]; for (int i = ssize(b) - 1; i >= 0; --i) { b[i] -= b.front(); } // REP(i, b.size()) cout << b[i] << " \n"[i + 1 == b.size()]; ll cost = LINF; for (const auto [x, y] : evenness(b)) { chmin(cost, abs(1LL * f * x + 1LL * d * y)); } ans += cost; } cout << ans << '\n'; } int main() { int t; cin >> t; while (t--) solve(); return 0; }