import sys input = lambda :sys.stdin.readline()[:-1] ni = lambda :int(input()) na = lambda :list(map(int,input().split())) yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES") no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO") ####################################################################### """Buggy! the output of practice_k becomes about 1/4.""" from typing import Callable, List, TypeVar S = TypeVar("S") F = TypeVar("F") MOD = 998244353 class LazySegmentTree: """Lazy Segment Tree References: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp """ __slots__ = [ "e", "op", "id", "mapping", "composition", "_n", "_log", "_size", "tree", "lazy", ] def __init__( self, a: List[S], e: S, op: Callable[[S, S], S], id_: F, mapping: Callable[[F, S], S], composition: Callable[[F, F], F], ) -> None: self.e = e self.op = op self.id = id_ self.mapping = mapping self.composition = composition self._n = len(a) self._log = (self._n - 1).bit_length() self._size = 1 << self._log self.tree = [e] * self._size + a + [e] * (self._size - self._n) for i in range(self._size - 1, 0, -1): self._update(i) self.lazy = [id_] * self._size def _update(self, k: int) -> None: """Update the value of a[k].""" self.tree[k] = self.op(self.tree[2 * k], self.tree[2 * k + 1]) def _apply_all(self, k: int, f: F) -> None: self.tree[k] = self.mapping(f, self.tree[k]) if k < self._size: self.lazy[k] = self.composition(f, self.lazy[k]) def _push(self, k: int) -> None: self._apply_all(2 * k, self.lazy[k]) self._apply_all(2 * k + 1, self.lazy[k]) self.lazy[k] = self.id def set(self, k: int, x: S) -> None: """Assign x to a[k] in O(log n).""" assert 0 <= k < self._n k += self._size for i in range(self._log, 0, -1): self._push(k >> i) self.tree[k] = x while k: k >>= 1 self._update(k) def get(self, k: int) -> S: """Return a[k] in O(1).""" assert 0 <= k < self._n k += self._size for i in range(self._log, 0, -1): self._push(k >> i) return self.tree[k] def prod(self, l: int, r: int) -> S: """Return op(a[l], ..., a[r - 1]). Return e, if l == r. Complexity: O(log n) """ assert 0 <= l <= r <= self._n if l == r: return self.e l += self._size r += self._size for i in range(self._log, 0, -1): if ((l >> i) << i) != l: self._push(l >> i) if ((r >> i) << i) != r: self._push(r >> i) sml, smr = self.e, self.e while l < r: if l & 1: sml = self.op(sml, self.tree[l]) l += 1 if r & 1: r -= 1 smr = self.op(self.tree[r], smr) l >>= 1 r >>= 1 return self.op(sml, smr) def prod_all(self) -> S: """Return op(a[0], ..., a[n - 1]. Return e if n == 0. Complexity: O(1) """ return self.tree[1] def apply(self, k: int, f: F) -> None: """Apply a[p] = op_st(a[p], x) in O(log n).""" assert 0 <= k < self._n k += self._size for i in range(self._log, 0, -1): self._push(k >> i) self.tree[k] = self.mapping(f, self.tree[k]) for i in range(1, self._log + 1): self._update(k >> i) def apply_range(self, l: int, r: int, f: F) -> None: """Apply a[i] = op_st(a[i], x) for all i = l..r-1 in O(log n).""" assert 0 <= l <= r <= self._n if l == r: return l += self._size r += self._size for i in range(self._log, 0, -1): if ((l >> i) << i) != l: self._push(l >> i) if ((r >> i) << i) != r: self._push((r - 1) >> i) l_tmp, r_tmp = l, r while l < r: if l & 1: self._apply_all(l, f) l += 1 if r & 1: r -= 1 self._apply_all(r, f) l >>= 1 r >>= 1 l, r = l_tmp, r_tmp for i in range(1, self._log + 1): if ((l >> i) << i) != l: self._update(l >> i) if ((r >> i) << i) != r: self._update((r - 1) >> i) def max_right(self, l: int, g: Callable[[S], bool]) -> int: """ Return an index r satisfying both: 1. r = l or f(op(a[l], a[l + 1], ..., a[r - 1])) = true 2. r = n or f(op(a[l], a[l + 1], ..., a[r])) = false. If f is monotone, this is the maximum r satisfying: f(op(a[l], a[l + 1], ..., a[r - 1])) = true. Complexity: O(log n) """ assert 0 <= l <= self._n assert g(self.e) if l == self._n: return self._n l += self._size for i in range(self._log, 0, -1): self._push(l >> i) sm = self.e while True: while not l & 1: l >>= 1 if not g(self.op(sm, self.tree[l])): while l < self._size: l *= 2 if g(self.op(sm, self.tree[l])): sm = self.op(sm, self.tree[l]) l += 1 return l - self._size sm = self.op(sm, self.tree[l]) l += 1 if (l & -l) == l: break return self._n def min_left(self, r: int, g: Callable[[S], bool]) -> int: """ Return an index l satisfying both: 1. l = r or f(op(a[l], a[l + 1], ..., a[r - 1])) = true 2. l = 0 or f(op(a[l - 1], a[l + 1], ..., a[r - 1])) = false. If f is monotone, this is the minimum l satisfying: f(op(a[l], a[l + 1], ..., a[r - 1])) = true. Complexity: O(log n) """ assert 0 <= r <= self._n assert g(self.e) if not r: return 0 r += self._size for i in range(self._log, 0, -1): self._push((r - 1) >> i) sm = self.e while True: r -= 1 while r > 1 and r & 1: r >>= 1 if not g(self.op(self.tree[r], sm)): while r < self._size: r = 2 * r + 1 if g(self.op(self.tree[r], sm)): sm = self.op(self.tree[r], sm) r -= 1 return r + 1 - self._size sm = self.op(self.tree[r], sm) if (r & -r) == r: break return 0 def nibutan(self, l: int, r: int, g: Callable[[S], bool]) -> int: if self.prod(l, r) > 0: return -1 return self.min_left(r, g) class HeavyLightDecomposition(object): def __init__(self, G, root=0): N = len(G) self._par = [-1] * N self._size = [1] * N self._heavy_child = [-1] * N self._head = [0] * N self._order = [0] * N self._dfs_heavy_child(G, root) self._dfs_decomposition(G, root) def _dfs_heavy_child(self, G, root): par, size, heavy_child = self._par, self._size, self._heavy_child stack = [~root, root] while stack: v = stack.pop() if v >= 0: for nv in G[v]: if nv != par[v]: par[nv] = v stack.append(~nv) stack.append(nv) else: v = ~v if par[v] != -1: size[par[v]] += size[v] for nv in G[v]: if nv == par[v]: continue if heavy_child[v] == -1 or size[nv] > size[heavy_child[v]]: heavy_child[v] = nv def _dfs_decomposition(self, G, root): par, size, heavy_child = self._par, self._size, self._heavy_child head, order = self._head, self._order stack = [root] count = 0 while stack: v = stack.pop() order[v] = count count += 1 if order[par[v]] == order[v] - 1: head[v] = head[par[v]] else: head[v] = v for nv in G[v]: if nv != par[v] and nv != heavy_child[v]: stack.append(nv) if heavy_child[v] != -1: stack.append(heavy_child[v]) def lca(self, u, v): par, head, order = self._par, self._head, self._order while True: if order[u] > order[v]: u, v = v, u if head[u] == head[v]: return u v = par[head[v]] def _ascend(self, u, v): par, head, order = self._par, self._head, self._order res = [] while head[u] != head[v]: res.append((order[u], order[head[u]])) u = par[head[u]] if u != v: res.append((order[u], order[v] + 1)) return res def _descend(self, u, v): return [(j, i) for i, j in self._ascend(v, u)[::-1]] def path(self, u, v, edge=False): l = self.lca(u, v) return self._ascend(u, l) + ([] if edge else [(self._order[l], self._order[l])]) + self._descend(l, v) def get_order(self): return self._order def edge_to_order(self, E): par, order = self._par, self._order return [order[u] if par[u] == v else order[v] for u, v in E] class DualSegmentTree: def __init__(self, size, f, default): self.n = (size-1).bit_length() self.size = 1<>i) def update(self, a, b, x): a += self.size b += self.size-1 self.thrust(a) self.thrust(b) l = a r = b + 1 lazy = self.lazy while l < r: if l & 1: lazy[l] = self.f(lazy[l], x) l += 1 if r & 1: r -= 1 lazy[r] = self.f(lazy[r], x) l >>= 1 r >>= 1 def get(self, k): k += self.size self.thrust(k) return self.lazy[k] N, Q = map(int, input().split()) _A = [10**18] * N G = [[] for _ in range(N)] E = [] for _ in range(N - 1): u, v, w = map(int, input().split()) u-=1 v-=1 G[u].append(v) G[v].append(u) E.append((u, v, w)) hld = HeavyLightDecomposition(G) for u,v,w in E: #print(u,v,hld._par[u]) if hld._par[u] == v: _A[u] = w else: _A[v] = w order = hld.get_order() d = [-1] * N for i in range(N): d[order[i]] = i A = [10**18] * N t = 0 for i, a in zip(order, _A): A[i] = a # (a dot b)(x) = b(a(x)) # bh(ahx + al) + bl = ahbhx + albh + bl def dot1(a, b): ah, al = divmod(a, MOD) bh, bl = divmod(b, MOD) return (ah * bh % MOD) * MOD + (al * bh + bl) % MOD dot2 = lambda a, b: dot1(b, a) ############################## e = 10**18 id_ = 0 def op(s, t): return min(s, t) def mapping(f, a): return a + f def composition(f, g): return f + g ############################## tree1 = LazySegmentTree(A, e, op, id_, mapping, composition) tree2 = DualSegmentTree(N, lambda x, y: x + y, 0) for i in range(N): j = order[i] tree2.update(j, j+1, hld._size[i]) #print(order) for _ in range(Q): t, *aa = map(int, input().split()) """ans = [] for i in range(N): ans.append(tree1.prod(i, i+1)) print(ans)""" if t == 1: v, x = aa v -= 1 y = 10 ** 18 pt = hld.path(0, v) for i, j in pt[::-1]: if i <= j: tree1.apply_range(i, j+1, -x) y = min(y, tree1.prod(i, j+1)) else: tree1.apply_range(j, i+1, -x) y = min(y, tree1.prod(j, i+1)) #print(v, y, pt) if y > 0: continue w = -2 for i, j in pt[::-1]: if i <= j: vv = tree1.nibutan(i, j+1, lambda x:x > 0) else: vv = tree1.nibutan(j, i+1, lambda x:x > 0) if vv != -1: w = vv-1 break #print("!", w) if w == -2:continue z = tree2.get(w) for i, j in pt: if i <= j: tree2.update(i, j+1, -z) else: tree2.update(j, i+1, -z) b = A[w] - tree1.prod(w, w+1) #print(v, w, b, hld.path(0, d[w])) for i, j in hld.path(0, d[w]): if i <= j: v = tree1.apply_range(i, j+1, b) else: v = tree1.apply_range(j, i+1, b) elif t == 2: print(tree2.get(0))