#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct IntervalsManagedBySet { using IntervalsType = std::set>; IntervalsType intervals{ {std::numeric_limits::lowest(), std::numeric_limits::lowest()}, {std::numeric_limits::max(), std::numeric_limits::max()}}; IntervalsManagedBySet() = default; bool contains(const T x) const { return contains(x, x); } bool contains(const T left, const T right) const { return find(left, right) != intervals.end(); } std::pair erase(const T x) { typename IntervalsType::const_iterator it = intervals.lower_bound({x, x}); if (it->first == x) { const T right = it->second; it = intervals.erase(it); if (x + 1 <= right) it = intervals.emplace(x + 1, right).first; } else { it = std::prev(it); const auto [left, right] = *it; if (right < x) return {std::next(it), false}; intervals.erase(it); it = std::next(intervals.emplace(left, x - 1).first); if (x + 1 <= right) it = intervals.emplace(x + 1, right).first; } return {it, true}; } std::pair erase( const T left, const T right) { assert(left <= right); typename IntervalsType::const_iterator it = intervals.lower_bound({left, left}); T res = 0; for (; it->second <= right; it = intervals.erase(it)) { res += it->second - it->first + 1; } if (it->first <= right) { res += right - it->first + 1; const T r = it->second; intervals.erase(it); it = intervals.emplace(right + 1, r).first; } if (left <= std::prev(it)->second) { it = std::prev(it); const auto [l, r] = *it; intervals.erase(it); if (right < r) { res += right - left + 1; intervals.emplace(right + 1, r); } else { res += r - left + 1; } it = std::next(intervals.emplace(l, left - 1).first); } return {it, res}; } typename IntervalsType::const_iterator find(const T x) const { return find(x, x); } typename IntervalsType::const_iterator find( const T left, const T right) const { typename IntervalsType::const_iterator it = intervals.lower_bound({left, left}); if (left < it->first) it = std::prev(it); return it->first <= left && right <= it->second ? it : intervals.end(); } std::pair insert(const T x) { typename IntervalsType::const_iterator it = intervals.lower_bound({x, x}); if (it->first == x) return {it, false}; if (x <= std::prev(it)->second) return {std::prev(it), false}; T left = x, right = x; if (x + 1 == it->first) { right = it->second; it = intervals.erase(it); } if (std::prev(it)->second == x - 1) { it = std::prev(it); left = it->first; intervals.erase(it); } return {intervals.emplace(left, right).first, true}; } std::pair insert(T left, T right) { assert(left <= right); typename IntervalsType::const_iterator it = intervals.lower_bound({left, left}); if (left <= std::prev(it)->second) { it = std::prev(it); left = it->first; } T res = 0; if (left == it->first && right <= it->second) return {it, res}; for (; it->second <= right; it = intervals.erase(it)) { res -= it->second - it->first + 1; } if (it->first <= right) { res -= it->second - it->first + 1; right = it->second; it = intervals.erase(it); } res += right - left + 1; if (right + 1 == it->first) { right = it->second; it = intervals.erase(it); } if (std::prev(it)->second == left - 1) { it = std::prev(it); left = it->first; intervals.erase(it); } return {intervals.emplace(left, right).first, res}; } T mex(const T x = 0) const { auto it = intervals.lower_bound({x, x}); if (x <= std::prev(it)->second) it = std::prev(it); return x < it->first ? x : it->second + 1; } friend std::ostream& operator<<(std::ostream& os, const IntervalsManagedBySet& x) { if (x.intervals.size() == 2) return os; auto it = next(x.intervals.begin()); while (true) { os << '[' << it->first << ", " << it->second << ']'; it = next(it); if (next(it) == x.intervals.end()) break; os << ' '; } return os; } }; template struct FenwickTreeSupportingRangeAddQuery { explicit FenwickTreeSupportingRangeAddQuery( const int n_, const Abelian ID = 0) : n(n_ + 1), ID(ID) { data_const.assign(n, ID); data_linear.assign(n, ID); } void add(int left, const int right, const Abelian val) { if (right < ++left) [[unlikely]] return; for (int i = left; i < n; i += i & -i) { data_const[i] -= val * (left - 1); data_linear[i] += val; } for (int i = right + 1; i < n; i += i & -i) { data_const[i] += val * right; data_linear[i] -= val; } } Abelian sum(const int idx) const { Abelian res = ID; for (int i = idx; i > 0; i -= i & -i) { res += data_linear[i]; } res *= idx; for (int i = idx; i > 0; i -= i & -i) { res += data_const[i]; } return res; } Abelian sum(const int left, const int right) const { return left < right ? sum(right) - sum(left) : ID; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } private: const int n; const Abelian ID; std::vector data_const, data_linear; }; int main() { int n; cin >> n; vector type(n, 3), l(n), r(n); vector x(n); REP(i, n) cin >> x[i] >> l[i] >> r[i]; int q; cin >> q; type.resize(n + q); l.resize(n + q); r.resize(n + q); x.resize(n + q); vector t(n + q); REP(i, q) { cin >> type[i + n]; if (type[i + n] == 1) { cin >> x[i + n] >> t[i + n]; } else if (type[i + n] == 2) { cin >> t[i + n]; } else if (type[i + n] == 3) { cin >> x[i + n] >> l[i + n] >> r[i + n]; } } vector times; REP(i, n + q) { if (type[i] == 1 || type[i] == 2) { times.emplace_back(t[i]); } else if (type[i] == 3) { times.emplace_back(l[i]); times.emplace_back(r[i]); } } ranges::sort(times); times.erase(unique(times.begin(), times.end()), times.end()); const int len = times.size(); map> imbs; FenwickTreeSupportingRangeAddQuery bit(len); REP(i, n + q) { if (type[i] == 1) { cout << (imbs[x[i]].contains(t[i]) ? "Yes\n" : "No\n"); } else if (type[i] == 2) { cout << bit[distance(times.begin(), ranges::lower_bound(times, t[i]))] << '\n'; } else if (type[i] == 3) { imbs[x[i]].insert(l[i], r[i]); bit.add(distance(times.begin(), ranges::lower_bound(times, l[i])), distance(times.begin(), ranges::lower_bound(times, r[i])) + 1, 1); } } return 0; }