#include using namespace std; #include using namespace atcoder; template inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); } template inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); } #define rep(i, n) for (long long i = 0; i < (long long)(n); i++) #define rep2(i, m ,n) for (int i = (m); i < (long long)(n); i++) #define REP(i, n) for (long long i = 1; i < (long long)(n); i++) typedef long long ll; #define updiv(N,X) (N + X - 1) / X #define all(n) n.begin(),n.end() #define YesNo(Q) Q==1?cout<<"Yes":cout<<"No" using P = pair; using mint = modint; const int MOD = 998244353LL; const ll INF = 999999999999LL; vector fact, fact_inv, inv; /* init_nCk :二項係数のための前処理 計算量:O(n) */ template void input(vector &v){ rep(i,v.size()){cin>>v[i];} return; } void init_nCk(int SIZE) { fact.resize(SIZE + 5); fact_inv.resize(SIZE + 5); inv.resize(SIZE + 5); fact[0] = fact[1] = 1; fact_inv[0] = fact_inv[1] = 1; inv[1] = 1; for (int i = 2; i < SIZE + 5; i++) { fact[i] = fact[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD; } } /* nCk :MODでの二項係数を求める(前処理 int_nCk が必要) 計算量:O(1) */ long long nCk(int n, int k) { assert(!(n < k)); assert(!(n < 0 || k < 0)); return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } ll POW(ll a,ll n){ long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } int main() { int n;cin>>n; vector v(n);vector l(n);vector r(n); rep(i,n){cin >> v[i] >> l[i] >> r[i];} int q;cin>>q; vector a(q);vector b(q);vector c(q);vector d(q); rep(i,q){ ll aa;cin>>aa;a[i] = aa; if(aa==1){ll bb;string cc;cin>> cc >> bb;c[i] = cc;b[i] = bb;} else if(aa==2){cin>>b[i];} else{cin>>c[i]>>b[i]>>d[i];} } set st; rep(i,n){st.insert(l[i]);st.insert(r[i]);} rep(i,q){if(a[i]==3){st.insert(b[i]);st.insert(d[i]);}} vector t; for(auto u : st){t.push_back(u);} map mp; rep(i,t.size()){mp[t[i]] = i;} map>> ps; rep(i,n){ ps[v[i]].insert(pair(r[i],l[i])); } fenwick_tree fw(t.size()+1); rep(i,n){ fw.add((int)(mp[l[i]]),1LL); fw.add((int)(mp[r[i]])+1,-1LL); } //rep(j,t.size()){cout << fw.sum(0,j+1) << " ";}cout<b[i]){ cout << "No" << endl; }else{cout<<"Yes"<