# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class SegmentTree: def __init__(self, v,marge,default): self.default = default self.marge = marge self.lastnode = 1 self.h = 1 while self.lastnode < len(v): self.lastnode*=2 self.h += 1 #1-indexedで作成する self.array = [self.default] *(2*self.lastnode) self.lazy = [0] *(2*self.lastnode) for i in range(len(v)): self.array[self.lastnode+i] = v[i] for i in range(self.lastnode-1,-1,-1): self.array[i] = self.marge(self.array[2*i],self.array[2*i+1]) def propagate(self,i): if self.lazy[i] != 0: v = self.lazy[i] #下に伝播させるやつ if i < self.lastnode: self.lazy[i] = 0 self.lazy[2*i]+= v self.lazy[2*i+1] += v self.array[2*i] += v self.array[2*i+1] += v self.lazy[i] = 0 def eval(self,L,R): L+=self.lastnode R+=self.lastnode L0 = L // (L & -L) # 奇数になるまで L を 2 で割ったもの R0 = R // (R & -R) # 奇数になるまで R を 2 で割ったもの H = L0.bit_length() - 1 for n in range(H, -1, -1): self.propagate(L0>>n) H = R0.bit_length() - 1 for n in range(H, -1, -1): self.propagate(R0>>n) def recalc(self,L,R): L+=self.lastnode R+=self.lastnode L0 = L // (L & -L) # 奇数になるまで L を 2 で割ったもの R0 = R // (R & -R) # 奇数になるまで R を 2 で割ったもの while L0 > 1: L0 >>= 1 self.array[L0] = self.marge(self.array[2*L0],self.array[2*L0+1]) while R0 > 1: R0 >>= 1 self.array[R0] = self.marge(self.array[2*R0],self.array[2*R0+1]) def add(self,q_left , q_right,val): self.eval(q_left , q_right) L,R = q_left, q_right q_left += self.lastnode q_right += self.lastnode while q_left < q_right: if q_left&1: self.array[q_left] += val self.lazy[q_left] += val q_left += 1 if q_right&1: q_right -= 1 self.array[q_right] +=val self.lazy[q_right] += val q_left >>= 1 q_right>>= 1 self.recalc(L,R) def query(self,q_left,q_right): self.eval(q_left , q_right) q_left += self.lastnode q_right += self.lastnode lres,rres = self.default,self.default while q_left < q_right: if q_left&1: lres = self.marge(lres,self.array[q_left]) q_left += 1 if q_right&1: q_right -= 1 rres = self.marge(self.array[q_right],rres) q_left >>= 1 q_right>>= 1 return self.marge(lres,rres) from collections import defaultdict N = int(input()) enter = defaultdict(SortedMultiset) info = [] times = set() for i in range(N): X,L,R = input().split() L = int(L) R = int(R) info.append((X,L,R)) times.add(L) times.add(R) Q = int(input()) querys = [] for i in range(Q): q,*arg = input().split() q = int(q) querys.append((q,arg)) if q == 1: times.add(int(arg[1])) elif q == 2: times.add(int(arg[0])) else: times.add(int(arg[1])) times.add(int(arg[2])) compttmp = sorted(list(times)) compt = {compttmp[i]:i for i in range(len(compttmp))} st = SegmentTree([0]*len(compt),lambda x,y:x+y,0) for X,L,R in info: enter[X].add((L,R)) st.add(compt[L],compt[R]+1,1) for q,arg in querys: if q == 1: x,t = arg t = int(t) z = enter[x].lt((t,10**18)) if z is None: print("No") else: l,r = z if l <= t <= r: print("Yes") else: print("No") elif q == 2: t = int(arg[0]) print(st.query(compt[t],compt[t]+1)) else: x,l,r = arg l = int(l) r = int(r) enter[x].add((l,r)) st.add(compt[l],compt[r]+1,1)