#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::needless_range_loop)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(dead_code)] use std::cmp::Reverse; use std::collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque}; #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { input! { S: chars } let mut T = vec![]; for &s in &S { T.push(s as u8 - b'A'); } eprintln!("{:?}", T); let mut pattern = vec![]; for i in 0..26 { for j in 0..26 { if i == j { continue; } pattern.push((i, j)); } } let mut ans = 0_usize; for (a, b) in pattern { let mut S_a = vec![0; S.len()]; for i in 0..S.len() { if T[i] == a { if i != 0 { S_a[i] = S_a[i - 1] + 1; } else { S_a[i] = 1; } } else if i != 0 { S_a[i] = S_a[i - 1]; } } for i in 0..S.len() { if S_a[i] >= 2 && T[i] == b { let n = S_a[i]; ans += n * (n - 1) / 2; } } } println!("{}", ans); } } fn enum_dividers(n: usize) -> Vec { let mut i = 1_usize; let mut ret = vec![]; while i * i <= n { if n % i == 0 { ret.push(i); if i != n / i { ret.push(n / i); } } i += 1; } ret.sort(); ret } #[derive(Debug, Clone)] struct UnionFind { parent: Vec, roots: BTreeSet, size: usize, } impl UnionFind { fn new(n: usize) -> Self { let mut roots = BTreeSet::new(); for i in 0..n { roots.insert(i); } UnionFind { parent: vec![-1; n], roots, size: n, } } fn find(&mut self, x: usize) -> usize { if self.parent[x] < 0 { return x; } let root = self.find(self.parent[x] as usize); self.parent[x] = root as isize; root } fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> { let root_x = self.find(x); let root_y = self.find(y); if root_x == root_y { return None; } let size_x = -self.parent[root_x]; let size_y = -self.parent[root_y]; self.size -= 1; if size_x >= size_y { self.parent[root_x] -= size_y; self.parent[root_y] = root_x as isize; self.roots.remove(&root_y); Some((root_x, root_y)) } else { self.parent[root_y] -= size_x; self.parent[root_x] = root_y as isize; self.roots.remove(&root_x); Some((root_y, root_x)) } } fn is_same(&mut self, x: usize, y: usize) -> bool { self.find(x) == self.find(y) } fn is_root(&mut self, x: usize) -> bool { self.find(x) == x } fn get_union_size(&mut self, x: usize) -> usize { let root = self.find(x); -self.parent[root] as usize } fn get_size(&self) -> usize { self.size } fn members(&mut self, x: usize) -> Vec { let root = self.find(x); (0..self.parent.len()) .filter(|i| self.find(*i) == root) .collect::>() } fn all_group_members(&mut self) -> BTreeMap> { let mut groups_map: BTreeMap> = BTreeMap::new(); for x in 0..self.parent.len() { let r = self.find(x); groups_map.entry(r).or_default().push(x); } groups_map } } trait Bound { fn lower_bound(&self, x: &T) -> usize; fn upper_bound(&self, x: &T) -> usize; } impl Bound for [T] { fn lower_bound(&self, x: &T) -> usize { let (mut low, mut high) = (0, self.len()); while low + 1 < high { let mid = (low + high) / 2; if self[mid] < *x { low = mid; } else { high = mid; } } if self[low] < *x { low + 1 } else { low } } fn upper_bound(&self, x: &T) -> usize { let (mut low, mut high) = (0, self.len()); while low + 1 < high { let mid = (low + high) / 2; if self[mid] <= *x { low = mid; } else { high = mid; } } if self[low] <= *x { low + 1 } else { low } } } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } #[macro_export] macro_rules! input { () => {}; (mut $var:ident: $t:tt, $($rest:tt)*) => { let mut $var = __input_inner!($t); input!($($rest)*) }; ($var:ident: $t:tt, $($rest:tt)*) => { let $var = __input_inner!($t); input!($($rest)*) }; (mut $var:ident: $t:tt) => { let mut $var = __input_inner!($t); }; ($var:ident: $t:tt) => { let $var = __input_inner!($t); }; } #[macro_export] macro_rules! __input_inner { (($($t:tt),*)) => { ($(__input_inner!($t)),*) }; ([$t:tt; $n:expr]) => { (0..$n).map(|_| __input_inner!($t)).collect::>() }; ([$t:tt]) => {{ let n = __input_inner!(usize); (0..n).map(|_| __input_inner!($t)).collect::>() }}; (chars) => { __input_inner!(String).chars().collect::>() }; (bytes) => { __input_inner!(String).into_bytes() }; (usize1) => { __input_inner!(usize) - 1 }; ($t:ty) => { $crate::read::<$t>() }; } #[macro_export] macro_rules! println { () => { $crate::write(|w| { use std::io::Write; std::writeln!(w).unwrap() }) }; ($($arg:tt)*) => { $crate::write(|w| { use std::io::Write; std::writeln!(w, $($arg)*).unwrap() }) }; } #[macro_export] macro_rules! print { ($($arg:tt)*) => { $crate::write(|w| { use std::io::Write; std::write!(w, $($arg)*).unwrap() }) }; } #[macro_export] macro_rules! flush { () => { $crate::write(|w| { use std::io::Write; w.flush().unwrap() }) }; } pub fn read() -> T where T: std::str::FromStr, T::Err: std::fmt::Debug, { use std::cell::RefCell; use std::io::*; thread_local! { pub static STDIN: RefCell> = RefCell::new(stdin().lock()); } STDIN.with(|r| { let mut r = r.borrow_mut(); let mut s = vec![]; loop { let buf = r.fill_buf().unwrap(); if buf.is_empty() { break; } if let Some(i) = buf.iter().position(u8::is_ascii_whitespace) { s.extend_from_slice(&buf[..i]); r.consume(i + 1); if !s.is_empty() { break; } } else { s.extend_from_slice(buf); let n = buf.len(); r.consume(n); } } std::str::from_utf8(&s).unwrap().parse().unwrap() }) } pub fn write(f: F) where F: FnOnce(&mut std::io::BufWriter), { use std::cell::RefCell; use std::io::*; thread_local! { pub static STDOUT: RefCell>> = RefCell::new(BufWriter::new(stdout().lock())); } STDOUT.with(|w| f(&mut w.borrow_mut())) }