#遅延セグメント木https://qiita.com/ether2420/items/7b67b2b35ad5f441d686def def segfunc(x,y): return x+y class LazySegTree_RAQ: def __init__(self,init_val,segfunc,ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1<<(n-1).bit_length() self.tree = [ide_ele]*2*self.num self.lazy = [0]*2*self.num for i in range(n): self.tree[self.num+i] = init_val[i] for i in range(self.num-1,0,-1): self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) def gindex(self,l,r): l += self.num r += self.num lm = l>>(l&-l).bit_length() rm = r>>(r&-r).bit_length() while r>l: if l<=lm: yield l if r<=rm: yield r r >>= 1 l >>= 1 while l: yield l l >>= 1 def propagates(self,*ids): for i in reversed(ids): v = self.lazy[i] if v==0: continue self.lazy[i] = 0 self.lazy[2*i] += v self.lazy[2*i+1] += v self.tree[2*i] += v self.tree[2*i+1] += v def add(self,l,r,x): ids = self.gindex(l,r) l += self.num r += self.num while l>= 1 l >>= 1 for i in ids: self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) + self.lazy[i] def query(self,l,r): self.propagates(*self.gindex(l,r)) res = self.ide_ele l += self.num r += self.num while l>= 1 r >>= 1 return res # https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: if a is None: a = list(self) size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: #Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N) a = list(a) self.size = len(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return str(self.a) def __str__(self) -> str: s = str(list(self)) return s def _position(self, x: T) -> Tuple[List[T], int]: #Find the bucket and position which x should be inserted. self must not be empty. for a in self.a: if x <= a[-1]: break return (a, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, i = self._position(x) return i != len(a) and a[i] == x def count(self, x: T) -> int: #Count the number of x. return self.index_right(x) - self.index(x) def add(self, x: T) -> None: #Add an element. / O(√N) if self.size == 0: self.a = [[x]] self.size = 1 return a, i = self._position(x) a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: #Remove an element and return True if removed. / O(√N) if self.size == 0: return False a, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: #Find the largest element < x, or None if it doesn't exist. for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: #Find the largest element <= x, or None if it doesn't exist. for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: #Find the smallest element > x, or None if it doesn't exist. for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: #Find the smallest element >= x, or None if it doesn't exist. for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: #Return the i-th element. if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: #Pop and return the i-th element. if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: #Count the number of elements < x. ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: #Count the number of elements <= x. ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans import sys from collections import defaultdict import bisect input=sys.stdin.readline dat1=[] N=int(input()) zaatu=set() for i in range(N): X,L,R=map(str,input().split()) L=int(L) R=int(R) zaatu.add(L) zaatu.add(R) dat1.append([X,L,R]) Q=int(input()) q=[] for _ in range(Q): qi=list(map(str,input().split())) q.append(qi) if q[0]==3: zaatu.add(int(qi[1])) zaatu.add(int(qi[2])) zaatu=sorted(list(zaatu)) print(zaatu) dic=defaultdict(SortedMultiset) st=LazySegTree_RAQ([0 for i in range(len(zaatu))],max,0) for i in range(N): X,L,R=dat1[i] dic[X].add(L) dic[X].add(R) left=bisect.bisect_left(zaatu,L) right=bisect.bisect_left(zaatu,R) st.add(left,right+1,1) for qi in q: if qi[0]=='1': d,x,t=qi t=int(t) l=dic[x].index_right(t) if l%2==1: print('Yes') else: print('No') elif qi[0]=='2': qi[1]=int(qi[1]) bi=bisect.bisect_left(zaatu,qi[1]) print(st.query(bi,bi+1)) elif qi[0]=='3': d,X,L,R=qi L=int(L) R=int(R) dic[X].add(L) dic[X].add(R) left=bisect.bisect_left(zaatu,L) right=bisect.bisect_left(zaatu,R) st.add(left,right+1,1)