#include using namespace std; //#pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; const ll dy[9]={0,1,-1,0,1,1,-1,-1,0}; const ll dx[9]={1,0,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template //faがint lenになってる struct SegTreeLazy {//遅延セグ木 単位元に注意(updateなら選ばれない数、affineなら(1,0)) using FX = function; using FA = function; using FM = function; int n; FX fx; FA fa; FM fm; const X ex; const M em; vector dat; vector lazy; SegTreeLazy(int n_, FX fx_, FA fa_, FM fm_, X ex_, M em_) : n(), fx(fx_), fa(fa_), fm(fm_), ex(ex_), em(em_), dat(n_ * 4, ex), lazy(n_ * 4, em) { int x = 1; while (n_ > x) x *= 2; n = x; } void set(int i, X x) { dat[i + n - 1] = x; } void build() { for (int k = n - 2; k >= 0; k--) dat[k] = fx(dat[2 * k + 1], dat[2 * k + 2]); } /* lazy eval */ void eval(int k, int len) { if (lazy[k] == em) return; // 更新するものが無ければ終了 if (k < n - 1) { // 葉でなければ子に伝搬 lazy[k * 2 + 1] = fm(lazy[k * 2 + 1], lazy[k]); lazy[k * 2 + 2] = fm(lazy[k * 2 + 2], lazy[k]); } // 自身を更新 dat[k] = fa(dat[k],lazy[k],len);//fa(dat[k], fp(lazy[k], len)); lazy[k] = em; } void update(int a, int b, M x, int k, int l, int r) { eval(k, r - l); if (a <= l && r <= b) { // 完全に内側の時 lazy[k] = fm(lazy[k], x); eval(k, r - l); } else if (a < r && l < b) { // 一部区間が被る時 update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子 update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子 dat[k] = fx(dat[k * 2 + 1], dat[k * 2 + 2]); } } void update(int a, int b, M x) { update(a, b, x, 0, 0, n); } X query_sub(int a, int b, int k, int l, int r) { eval(k, r - l); if (r <= a || b <= l) { // 完全に外側の時 return ex; } else if (a <= l && r <= b) { // 完全に内側の時 return dat[k]; } else { // 一部区間が被る時 X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2); X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r); return fx(vl, vr); } } X query(int a, int b) { return query_sub(a, b, 0, 0, n); } X operator[](int i){ return query(i,i+1); } }; int main(){ ll n;cin >> n; vl g(n),l(n),r(n); vl pls; map mp; rep(i,n){ string f;cin >> f; if(!mp.count(f)){ ll z=mp.size(); mp[f]=z; } g[i]=mp[f]; cin >> l[i] >> r[i]; pls.emplace_back(l[i]); pls.emplace_back(r[i]); } ll q;cin >> q; vvl que(q); rep(i,q){ ll t;cin >> t; que[i].emplace_back(t); if(t==1){ string f;cin >> f; if(!mp.count(f)){ ll z=mp.size(); mp[f]=z; } que[i].emplace_back(mp[f]); ll s;cin >> s;que[i].emplace_back(s); } else if(t==2){ ll s;cin >> s;que[i].emplace_back(s); pls.emplace_back(s); } else{ string f;cin >> f; if(!mp.count(f)){ ll z=mp.size(); mp[f]=z; } que[i].emplace_back(mp[f]); ll s;cin >> s;que[i].emplace_back(s); pls.emplace_back(s); s;cin >> s;que[i].emplace_back(s); pls.emplace_back(s); } } sort(all(pls));pls.erase(unique(all(pls)),pls.end()); ll m=pls.size(); auto fx=[](ll a,ll b){return a+b;}; auto fa=[](ll a,ll b,int len){return a+b*len;}; auto fm=[](ll a,ll b){return a+b;}; SegTreeLazy st(m,fx,fa,fm,0,0); ll u=mp.size(); vector> iv(u); rep(i,n){ ll lx=lower_bound(all(pls),l[i])-pls.begin(); ll rx=lower_bound(all(pls),r[i])-pls.begin(); st.update(lx,rx+1,1); iv[g[i]].insert({l[i],r[i]}); } rep(i,q){ if(que[i][0]==1){ auto itr=iv[que[i][1]].upper_bound({que[i][2],INF}); if(itr==iv[que[i][1]].begin()){ cout << "No" << endl;continue; } itr--; if(itr->first<=que[i][2]&&que[i][2]<=itr->second)cout << "Yes" << endl; else cout << "No" << endl; } else if(que[i][0]==2){ ll lx=lower_bound(all(pls),que[i][1])-pls.begin(); cout << st[lx] << endl; } else{ ll lx=lower_bound(all(pls),que[i][2])-pls.begin(); ll rx=lower_bound(all(pls),que[i][3])-pls.begin(); st.update(lx,rx+1,1); iv[que[i][1]].insert({que[i][2],que[i][3]}); } } }