from collections import defaultdict from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional from bisect import bisect_left, bisect_right import math def segfunc(x, y): return x+y class SegTree: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n-1).bit_length() self.tree = [ide_ele]*2*self.num for i in range(n): self.tree[self.num+i] = init_val[i] for i in range(self.num-1, 0, -1): self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) def add(self, k, x): k += self.num self.tree[k] += x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def update(self, k, x): k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r-1]) l >>= 1 r >>= 1 return res # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) self.size = len(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1: len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int]: "Find the bucket and position which x should be inserted. self must not be empty." for a in self.a: if x <= a[-1]: break return (a, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans N = int(input()) info = [input().split() for _ in range(N)] Q = int(input()) query = [input().split() for _ in range(Q)] # 座圧 S = set() for _, l, r in info: S.add(int(l)) S.add(int(r)) for i in range(Q): t, *q = query[i] if t == '1': _, t = q S.add(int(t)) if t == '2': t = int(q[0]) S.add(t) if t == '3': _, l, r = q S.add(int(l)) S.add(int(r)) compress = defaultdict(int) for i, v in enumerate(sorted(list(S))): compress[v] = i compress_info = [] L_user = defaultdict(SortedSet) R_user = defaultdict(int) Seg = SegTree([0]*(max(compress.keys())+1), segfunc, 0) for x, l, r in info: L = compress[int(l)] R = compress[int(r)] L_user[x].add(L) R_user[x, L] = R Seg.add(L, 1) Seg.add(R+1, -1) ans = [] for i in range(Q): t, *q = query[i] t = int(t) if t == 1: x, t = q t = compress[int(t)] L = L_user[x].le(t) res = 'No' if L != None: R = R_user[x, L] if L <= t <= R: res = 'Yes' ans.append(res) elif t == 2: t = compress[int(q[0])] t2 = Seg.query(0, t+1) res = t2 ans.append(res) elif t == 3: x, l, r = q L = compress[int(l)] R = compress[int(r)] L_user[x].add(L) R_user[x, L] = R Seg.add(L, 1) Seg.add(R+1, -1) print(*ans, sep="\n")