# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) self.size = len(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int]: "Find the bucket and position which x should be inserted. self must not be empty." for a in self.a: if x <= a[-1]: break return (a, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class BinaryIndexedTree: def __init__(self,size): self.N = size self.bit = [0]*(size+1) def add(self,x,w): x += 1 while x <= self.N: self.bit[x] += w x += (x & -x) def _sum(self,x): # [0,x) ret = 0 while x > 0: ret += self.bit[x] x -= (x & -x) return ret def sum(self,l,r): # [l,r) return self._sum(r) - self._sum(l) def lower_bound(self,w): if w <= 0: return 0 x,k = 0,1 while k*2 <= self.N: k *= 2 while k > 0: if x+k <= self.N and self.bit[x+k] < w: w -= self.bit[x+k] x += k k //= 2 return x def __str__(self): # for debug arr = [self.sum(i,i+1) for i in range(self.N)] return str(arr) import sys input = sys.stdin.readline N = int(input()) XLR = [input().split() for i in range(N)] Q = int(input()) qs = [input().split() for i in range(Q)] names = set() times = set() for x,l,r in XLR: l,r = int(l),int(r) names.add(x) times.add(l) times.add(r+1) for _t,*q in qs: if _t=='1': x,t = q t = int(t) names.add(x) times.add(t) elif _t=='2': t, = q t = int(t) times.add(t) else: x,l,r = q l,r = int(l),int(r) names.add(x) times.add(l) times.add(r+1) s_names = sorted(names) s_times = sorted(times) d_names = {a:i for i,a in enumerate(s_names)} d_times = {a:i for i,a in enumerate(s_times)} M = len(s_names) T = len(s_times) st = [SortedSet() for _ in range(M)] bit = BinaryIndexedTree(T+1) for x,l,r in XLR: xi = d_names[x] li = d_times[int(l)] ri = d_times[int(r)+1] st[xi].add(li) st[xi].add(ri) bit.add(li, 1) bit.add(ri, -1) for _t,*q in qs: if _t=='1': x,t = q t = int(t) xi = d_names[x] ti = d_times[t] print('Yes' if st[xi].index_right(ti)%2 else 'No') elif _t=='2': t, = q t = int(t) ti = d_times[t] print(bit._sum(ti+1)) else: x,l,r = q l,r = int(l),int(r) xi = d_names[x] li = d_times[int(l)] ri = d_times[int(r)+1] st[xi].add(li) st[xi].add(ri) bit.add(li, 1) bit.add(ri, -1)