use std::cmp::Reverse; use std::collections::BinaryHeap; fn main() { let mut sc = Scanner::new(); let n = sc.usize(); let m = sc.usize(); let a = sc.vec::(n); let b = sc.vec::(n); let mut g = BinaryHeap::new(); let mut gg = vec![]; let mut mma = BinaryHeap::new(); let mut mmma = vec![]; for _ in 0..m { let t = sc.u8(); let c = sc.usize(); if t == 0 { g.push(c); gg.push(c); } else { mma.push(c); mmma.push(c); } } if n <= 15 { solve_small(n, m, a, b, gg, mmma); return; } let mut ab = a.into_iter().zip(b.into_iter()).enumerate().collect::>(); let mut ok = vec![false; n]; ab.sort_by_key(|&(_, (a,b))| (Reverse(a), Reverse(b))); for &(i,(a , b)) in ab.iter() { if a > b { continue } if !g.is_empty() && g.peek().unwrap() >= &a { g.pop(); ok[i] = true; } } ab.sort_by_key(|&(_, (a,b))| (Reverse(b), Reverse(a))); for &(i,(a , b)) in ab.iter() { if ok[i] { continue; } if !mma.is_empty() && mma.peek().unwrap() >= &b { mma.pop(); ok[i] = true; } } ab.sort_by_key(|&(_, (a,b))| (Reverse(a), Reverse(b))); for &(i,(a , b)) in ab.iter() { if ok[i] { continue; } if !g.is_empty() && g.peek().unwrap() >= &a { g.pop(); ok[i] = true; } } println!("{}", ok.iter().filter(|&&x| !x).count()); } fn solve_small(n:usize, m:usize, mut a:Vec, mut b:Vec, gg:Vec, mmma:Vec) { let mut ans = 0; for s in 0usize..1<>i)&1==1 && (t>>i)&1==0).collect::>(); let mma = (0..n).filter(|&i| (s>>i)&1==1 && (t>>i)&1==1).collect::>(); let mut now = 0; let mut g = g.iter().map(|&i| a[i]).collect::>(); g.sort(); for &g in g.iter() { while now < gg.len() && gg[now] < g { now += 1; } if now >= gg.len() { t = s & t.saturating_sub(1); continue; } now += 1; } let mut now = 0; let mut mma = mma.iter().map(|&i| a[i]).collect::>(); mma.sort(); for &m in mma.iter() { while now < mmma.len() && mmma[now] < m { now += 1; } if now >= mmma.len() { t = s & t.saturating_sub(1); continue; } now += 1; } ans = ans.max(n - s.count_ones() as usize); t = s & t.saturating_sub(1); } } println!("{}", n - ans); } struct Scanner { s : std::collections::VecDeque } #[allow(unused)] impl Scanner { fn new() -> Self { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); Self { s : s.split_whitespace().map(|s| s.to_string()).collect() } } fn reload(&mut self) -> () { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); self.s = s.split_whitespace().map(|s| s.to_string()).collect(); } fn usize(&mut self) -> usize { self.input() } fn usize1(&mut self) -> usize { self.input::() - 1 } fn isize(&mut self) -> isize { self.input() } fn i32(&mut self) -> i32 { self.input() } fn i64(&mut self) -> i64 { self.input() } fn i128(&mut self) -> i128 { self.input() } fn u8(&mut self) -> u8 { self.input() } fn u32(&mut self) -> u32 { self.input() } fn u64(&mut self) -> u64 { self.input() } fn u128(&mut self) -> u128 { self.input() } fn edge(&mut self) -> (usize, usize) { (self.usize1(), self.usize1()) } fn edges(&mut self, m : usize) -> Vec<(usize, usize)> { let mut e = Vec::with_capacity(m); for _ in 0..m { e.push(self.edge()); } e } fn wedge(&mut self) -> (usize, usize, T) { (self.usize1(), self.usize1(), self.input()) } fn wedges(&mut self, m : usize) -> Vec<(usize, usize, T)> { let mut e = Vec::with_capacity(m); for _ in 0..m { e.push(self.wedge()); } e } fn input(&mut self) -> T where T: std::str::FromStr { if self.s.is_empty() { self.reload(); } if let Some(head) = self.s.pop_front() { head.parse::().ok().unwrap() } else { panic!() } } fn tuple(&mut self) -> (T, U) where T: std::str::FromStr, U: std::str::FromStr { (self.input(), self.input()) } fn vec(&mut self, n: usize) -> Vec where T: std::str::FromStr { if self.s.is_empty() { self.reload(); } self.s.drain(..n).map(|s| s.parse::().ok().unwrap() ).collect::>() } fn nvec(&mut self) -> Vec where T: std::str::FromStr { let n : usize = self.input(); self.vec(n) } fn chars(&mut self) -> Vec { let s : String = self.input(); s.chars().collect() } fn bytes(&mut self) -> Vec { let s : String = self.input(); s.bytes().collect() } }