#include using namespace std; //#pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; const ll dy[9]={1,0,-1,0,1,1,-1,-1,0}; const ll dx[9]={0,1,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } struct UnionFind { vector par; vector edge; UnionFind(int n) : par(n, -1),edge(n, 0) {} int root(int x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } bool same(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x); y = root(y); if (x == y) { edge[x]++; return false; } if (par[x] > par[y]) swap(x, y); par[x] += par[y]; par[y] = x; edge[x] += edge[y]+1; return true; } int size(int x) { return -par[root(x)]; } }; struct osak{ vector lpf;// least prime factor vector prime;// prime table osak(long long n){//linear_sieve lpf=vector(n+1,-1); for (int d = 2; d <= n; ++d) { if(lpf[d]==-1){ lpf[d]=d;prime.emplace_back(d); } for(auto p:prime){ if(p*d>n||p>lpf[d])break; lpf[p*d]=p; } } } map factor(int n) { map factor; while (n > 1) { factor[lpf[n]]++; n /= lpf[n]; } return factor; } vector divisor(int N){//O(div.size()) map facs=factor(N); vector ret={1}; for(auto p:facs){ ll range=ret.size(); ll now=1; for(int i=0;i= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } bool operator==(const mint &p) const { return x == p.x; } bool operator!=(const mint &p) const { return x != p.x; } // for prime mod mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} using vm=vector; using vvm=vector; struct combination { vector fact, ifact; combination(int n):fact(n+1),ifact(n+1) { assert(n < mod); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[k]*ifact[n-k]; } }comb(max_n); mint dp[100][100][200]; int main(){ ll h,w,K;cin >> h >> w >> K; vector g(h);rep(i,h)cin >> g[i]; memset(dp,0,sizeof(dp)); dp[0][0][0]=1; rep(i,h){ rep(j,w){ rep(k,K){ if(i+1