// #pragma GCC target("avx") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector #define vvi vector #define vvvi vector #define vvvvi vector #define pii pair #define vpii vector> template void chmax(T &a, const T &b) {a = (a > b? a : b);} template void chmin(T &a, const T &b) {a = (a < b? a : b);} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long template struct Modular_Int { long long x; Modular_Int() = default; Modular_Int(long long x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {} long long val() const { return (x%MOD+MOD)%MOD; } long long get_mod() const { return MOD; } Modular_Int& operator^=(long long d) { Modular_Int ret(1); long long nx = x; while(d) { if(d&1) ret *= nx; (nx *= nx) %= MOD; d >>= 1; } *this = ret; return *this; } Modular_Int operator^(long long d) const {return Modular_Int(*this) ^= d;} Modular_Int pow(long long d) const {return Modular_Int(*this) ^= d;} //use this basically Modular_Int inv() const { return Modular_Int(*this) ^ (MOD-2); } //only if the module number is not prime //Don't use. This is broken. // Modular_Int inv() const { // long long a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0; // while(b) { // long long t = a/b; // a -= t*b, swap(a, b); // u -= t*v, swap(u, v); // } // return Modular_Int(u); // } Modular_Int& operator+=(const Modular_Int other) { if((x += other.x) >= MOD) x -= MOD; return *this; } Modular_Int& operator-=(const Modular_Int other) { if((x -= other.x) < 0) x += MOD; return *this; } Modular_Int& operator*=(const Modular_Int other) { long long z = x; z *= other.x; z %= MOD; x = z; if(x < 0) x += MOD; return *this; } Modular_Int& operator/=(const Modular_Int other) { return *this = *this * other.inv(); } Modular_Int& operator++() { x++; if (x == MOD) x = 0; return *this; } Modular_Int& operator--() { if (x == 0) x = MOD; x--; return *this; } Modular_Int operator+(const Modular_Int other) const {return Modular_Int(*this) += other;} Modular_Int operator-(const Modular_Int other) const {return Modular_Int(*this) -= other;} Modular_Int operator*(const Modular_Int other) const {return Modular_Int(*this) *= other;} Modular_Int operator/(const Modular_Int other) const {return Modular_Int(*this) /= other;} Modular_Int& operator+=(const long long other) {Modular_Int other_(other); *this += other_; return *this;} Modular_Int& operator-=(const long long other) {Modular_Int other_(other); *this -= other_; return *this;} Modular_Int& operator*=(const long long other) {Modular_Int other_(other); *this *= other_; return *this;} Modular_Int& operator/=(const long long other) {Modular_Int other_(other); *this /= other_; return *this;} Modular_Int operator+(const long long other) const {return Modular_Int(*this) += other;} Modular_Int operator-(const long long other) const {return Modular_Int(*this) -= other;} Modular_Int operator*(const long long other) const {return Modular_Int(*this) *= other;} Modular_Int operator/(const long long other) const {return Modular_Int(*this) /= other;} bool operator==(const Modular_Int other) const {return (*this).val() == other.val();} bool operator!=(const Modular_Int other) const {return (*this).val() != other.val();} bool operator==(const long long other) const {return (*this).val() == other;} bool operator!=(const long long other) const {return (*this).val() != other;} Modular_Int operator-() const {return Modular_Int(0LL)-Modular_Int(*this);} // friend constexpr istream& operator>>(istream& is, mint& x) noexcept { // long long X; // is >> X; // x = X; // return is; // } // friend constexpr ostream& operator<<(ostream& os, mint& x) { // os << x.val(); // return os; // } }; // const long long MOD_VAL = 1e9+7; const long long MOD_VAL = 998244353; using mint = Modular_Int; struct fast_prime_factorize { private: vector MinFactor; vector IsPrime; public: vector primes; fast_prime_factorize(const int MAXN) : MinFactor(MAXN), IsPrime(MAXN) { for (int i = 0; i < MAXN; ++i) IsPrime[i] = true, MinFactor[i] = -1; IsPrime[0] = false; IsPrime[1] = false; MinFactor[0] = 0; MinFactor[1] = 1; for (int i = 2; i < MAXN; ++i) { if (IsPrime[i]) { MinFactor[i] = i; primes.push_back(i); for (int j = i*2; j < MAXN; j += i) { IsPrime[j] = false; if (MinFactor[j] == -1) MinFactor[j] = i; } } } } vector > factorize(int n) { vector > res; while (n != 1) { int prime = MinFactor[n]; int exp = 0; while (MinFactor[n] == prime) { ++exp; n /= prime; } res.push_back(make_pair(prime, exp)); } return res; } bool is_prime(int n) { return IsPrime[n]; } vector All_Min_Factor() { return MinFactor; } vector All_Primes() { return primes; } }sieve(1000100); void solve() { int n, m; cin >> n >> m; vi order(n); iota(all(order), 0); // composition FOR(m) { int t; cin >> t; vi s(t); rep(j, t) { cin >> s[j]; --s[j]; } int lst = order[s.back()]; for(int j = t-1; j > 0; --j) order[s[j]] = order[s[j-1]]; order[s[0]] = lst; } // decompose int circle = 0; vector done(n, false); auto dfs = [&](int v, auto self) -> void { done[v] = true; ++circle; if(!done[order[v]]) { self(order[v], self); } }; map mp; FOR(n) { if(!done[i]) { circle = 0; dfs(i, dfs); vpii p = sieve.factorize(circle); for(auto e : p) { chmax(mp[e.first], e.second); } } } mint ans = 1; for(auto e : mp) ans *= mint(e.first).pow(e.second); cout << ans.val() << endl; } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }