import sys input = sys.stdin.readline from collections import defaultdict from operator import itemgetter # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) self.size = len(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int]: "Find the bucket and position which x should be inserted. self must not be empty." for a in self.a: if x <= a[-1]: break return (a, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans NAME=defaultdict(SortedSet) N=int(input()) A=[input().split() for i in range(N)] Q=int(input()) B=[input().split() for i in range(Q)] LIST=[] for i in range(N): A[i][1]=int(A[i][1]) A[i][2]=int(A[i][2]) LIST.append(A[i][1]) LIST.append(A[i][2]) for i in range(Q): B[i][0]=int(B[i][0]) if B[i][0]==1: B[i][2]=int(B[i][2]) LIST.append(B[i][2]) elif B[i][0]==2: B[i][1]=int(B[i][1]) LIST.append(B[i][1]) elif B[i][0]==3: B[i][2]=int(B[i][2]) B[i][3]=int(B[i][3]) LIST.append(B[i][2]) LIST.append(B[i][3]) LIST.sort() LIST2=[] for l in LIST: if LIST2!=[] and LIST2[-1]==l: continue LIST2.append(l) D={LIST2[i]:i for i in range(len(LIST2))} LEN=max(A) # 必要なら座標圧縮する LEN=10**6 BIT=[0]*(LEN+1) # 1-indexedなtree. 配列BITの長さはLEN+1にしていることに注意。 def update(v,w): # index vにwを加える while v<=LEN: BIT[v]+=w v+=(v&(-v)) # v&(-v)で、最も下の立っているビット. 自分を含む大きなノードへ. たとえばv=3→v=4 def getvalue(v): # [1,v]の区間の和を求める ANS=0 while v!=0: ANS+=BIT[v] v-=(v&(-v)) # 自分より小さい自分の和を構成するノードへ. たとえばv=14→v=12へ return ANS for x,l,r in A: NAME[x].add((l,r)) update(l,1) update(r+1,-1) for i in range(Q): if B[i][0]==3: NAME[B[i][1]].add((B[i][2],B[i][3])) update(B[i][2],1) update(B[i][3]+1,-1) ANS=[] for i in range(Q-1,-1,-1): if B[i][0]==3: NAME[B[i][1]].discard((B[i][2],B[i][3])) update(B[i][2],-1) update(B[i][3],1) elif B[i][0]==2: ANS.append(getvalue(B[i][1])) else: x=B[i][1] y=B[i][2] ind=NAME[x].lt((y,10**9)) if ind!=None: a,b=ind if a<=y<=b: ANS.append("Yes") else: ANS.append("No") else: ANS.append("No") ANS.reverse() print("\n".join(map(str,ANS)))