#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; template struct SegmentTree { using Monoid = typename T::Monoid; explicit SegmentTree(int n) : SegmentTree(std::vector(n, T::id())) {} explicit SegmentTree(const std::vector &a) : n(a.size()), sz(1) { while (sz < n) sz <<= 1; data.assign(sz << 1, T::id()); std::copy(a.begin(), a.end(), data.begin() + sz); for (int i = sz - 1; i > 0; --i) { data[i] = T::merge(data[i << 1], data[(i << 1) + 1]); } } void set(int idx, const Monoid val) { idx += sz; data[idx] = val; while (idx >>= 1) data[idx] = T::merge(data[idx << 1], data[(idx << 1) + 1]); } Monoid get(int left, int right) const { Monoid res_l = T::id(), res_r = T::id(); for (left += sz, right += sz; left < right; left >>= 1, right >>= 1) { if (left & 1) res_l = T::merge(res_l, data[left++]); if (right & 1) res_r = T::merge(data[--right], res_r); } return T::merge(res_l, res_r); } Monoid operator[](const int idx) const { return data[idx + sz]; } private: const int n; int sz; // sz + 原数组坐标 = 线段树里的编号,1 based std::vector data; }; namespace monoid { template struct RangeMinimumQuery { using Monoid = T; static constexpr Monoid id() { return std::numeric_limits::max(); } static Monoid merge(const Monoid &a, const Monoid &b) { return std::min(a, b); } }; template struct RangeMaximumQuery { using Monoid = T; static constexpr Monoid id() { return std::numeric_limits::lowest(); } static Monoid merge(const Monoid &a, const Monoid &b) { return std::max(a, b); } }; template struct RangeSumQuery { using Monoid = T; static constexpr Monoid id() { return 0; } static Monoid merge(const Monoid &a, const Monoid &b) { return a + b; } }; } // namespace monoid template struct DSU { std::vector f, siz; DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); } T leader(T x) { while (x != f[x]) x = f[x] = f[f[x]]; return x; } bool same(T x, T y) { return leader(x) == leader(y); } bool merge(T x, T y) { x = leader(x); y = leader(y); if (x == y) return false; siz[x] += siz[y]; f[y] = x; return true; } T size(int x) { return siz[leader(x)]; } }; bool isPrime(long long number) { if (number != 2) { if (number < 2 || number % 2 == 0) { return false; } for (int i = 3; (i * i) <= number; i += 2) { if (number % i == 0) { return false; } } } return true; } std::pair, std::vector> get_prime_factor_with_kinds( int n) { std::vector prime_factors; std::vector cnt; // number of i_th factor for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } void solve() { int n, m; std::cin >> n >> m; std::vector a(n); std::iota(a.begin(), a.end(), 0); for (int i = 0; i < m; i++) { int k; std::cin >> k; std::vector f(k); for (int &x : f) { std::cin >> x; x--; } auto c = a; // f.push_back(f[0]); for (int j = k - 1; j >= 1; j--) { std::swap(a[f[j]], a[f[j - 1]]); } } DSU dsu(n); std::map mp; for (int i = 0; i < n; i++) dsu.merge(i, a[i]); for (int i = 0; i < n; i++) { if (i == dsu.leader(i)) { int sz = dsu.size(i); auto [p, cnt] = get_prime_factor_with_kinds(sz); for (int i = 0; i < p.size(); i++) { mp[p[i]] = std::max(mp[p[i]], cnt[i]); } } } using mint = ModInt<998244353>; mint ans = 1; for (auto [k, v] : mp) { for (int i = 1; i <= v; i++) { ans *= k; } } std::cout << ans << '\n'; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int t = 1; while (t--) solve(); return 0; }