#define MOD_TYPE 2 #include using namespace std; #include // #include // #include // #include using namespace atcoder; #if 0 #include #include using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 0 #include #include #include #include using namespace __gnu_pbds; using namespace __gnu_cxx; template using extset = tree, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #pragma region Macros using ll = long long int; using ld = long double; using pii = pair; using pll = pair; using pld = pair; template using smaller_queue = priority_queue, greater>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 1000003; #endif #endif using mint = static_modint; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; const double PI = acos(-1.0); constexpr ld EPS = 1e-10; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define RREP(i, m, n) for (ll i = n - 1; i >= m; i--) #define rrep(i, n) RREP(i, 0, n) #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; #define UNIQUE(v) v.erase(unique(all(v)), v.end()) struct io_init { io_init() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(20) << setiosflags(ios::fixed); }; } io_init; template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll floor(ll a, ll b) { if (b < 0) a *= -1, b *= -1; if (a >= 0) return a / b; return -((-a + b - 1) / b); } inline ll ceil(ll a, ll b) { return floor(a + b - 1, b); } template inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template vector compress(vector &v) { vector val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template constexpr istream &operator>>(istream &is, pair &p) noexcept { is >> p.first >> p.second; return is; } template constexpr ostream &operator<<(ostream &os, pair p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } ostream &operator<<(ostream &os, modint m) { os << m.val(); return os; } template constexpr istream &operator>>(istream &is, vector &v) noexcept { for (int i = 0; i < v.size(); i++) is >> v[i]; return is; } template constexpr ostream &operator<<(ostream &os, vector &v) noexcept { for (int i = 0; i < v.size(); i++) os << v[i] << (i + 1 == v.size() ? "" : " "); return os; } template constexpr void operator--(vector &v, int) noexcept { for (int i = 0; i < v.size(); i++) v[i]--; } random_device seed_gen; mt19937_64 engine(seed_gen()); inline ll randInt(ll l, ll r) { return engine() % (r - l + 1) + l; } struct BiCoef { vector fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(1000010); #pragma endregion // ------------------------------- template class LiChaoTree { int n; vector xs, p, q; vector u; int INFi; T INFT; void _add_line(T a, T b, int k, int l, int r) { while (r - l > 0) { int m = (l + r) >> 1; if (!u[k]) { p[k] = a; q[k] = b; u[k] = true; return; } T lx = xs[l], mx = xs[m], rx = xs[r - 1]; T pk = p[k], qk = q[k]; bool left = (a * lx + b < pk * lx + qk); bool mid = (a * mx + b < pk * mx + qk); bool right = (a * rx + b < pk * rx + qk); if (left && right) { p[k] = a; q[k] = b; return; } if (!left && !right) { return; } if (mid) { swap(p[k], a); swap(q[k], b); } if (left != mid) { k = 2 * k + 1; r = m; } else { k = 2 * k + 2; l = m; } } } T _query(int k, T x) { k += n - 1; T s = u[k] ? p[k] * x + q[k] : INFT; while (k > 0) { k = (k - 1) / 2; if (u[k]) { T r = p[k] * x + q[k]; s = min(s, r); } } return s; } public: LiChaoTree(vector &ps, T INFT = 4e18, int INFi = 1e9 + 10) : INFT(INFT), INFi(INFi) { n = 1; while (n < ps.size()) n <<= 1; xs.resize(2 * n - 1); p.resize(2 * n - 1); q.resize(2 * n - 1); u.assign(2 * n - 1, false); for (int i = 0; i < ps.size(); ++i) xs[i] = ps[i]; for (int i = ps.size(); i < 2 * n - 1; ++i) xs[i] = INFi; } void add_line(T a, T b) { if (!isMin) a *= -1, b *= -1; _add_line(a, b, 0, 0, n); } void add_segment_line(T a, T b, int l, int r) { if (!isMin) a *= -1, b *= -1; T l0 = l + n, r0 = r + n; T s0 = l, t0 = r, sz = 1; while (l0 < r0) { if (r0 & 1) { --r0; t0 -= sz; _add_line(a, b, r0 - 1, t0, t0 + sz); } if (l0 & 1) { _add_line(a, b, l0 - 1, s0, s0 + sz); ++l0; s0 += sz; } l0 >>= 1; r0 >>= 1; sz <<= 1; } } inline T query(int i) { if (!isMin) return -_query(i, xs[i]); return _query(i, xs[i]); } }; void solve() { int n; cin >> n; vector q(n); cin >> q; vector dp(200001, 0); vector ps; REP(i, -100000, 100001) ps.push_back(i); LiChaoTree lct(ps); int ofs = 100000; rep(i, n) { int qi = q[i]; if (i == 0) { lct.add_line(qi, dp[qi + ofs]); continue; } dp[qi + ofs] = lct.query(qi + ofs); lct.add_line(qi, dp[qi + ofs]); } cout << *max_element(all(dp)) << "\n"; } int main() { solve(); }