#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template constexpr T infty = 0; template <> constexpr int infty = 1'000'000'000; template <> constexpr ll infty = ll(infty) * infty * 2; template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr i128 infty = i128(infty) * infty; template <> constexpr double infty = infty; template <> constexpr long double infty = infty; using pi = pair; using vi = vector; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template T SUM(const vector &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template T POP(deque &que) { T a = que.front(); que.pop_front(); return a; } template T POP(pq &que) { T a = que.top(); que.pop(); return a; } template T POP(pqg &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template T POP(vc &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template vector argsort(const vector &A) { vector ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { vc B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include namespace fastio { #define FASTIO // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_write : public decltype(has_write_impl::check(std::declval())) { }; struct has_read_impl { template static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_read : public decltype(has_read_impl::check(std::declval())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template ::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template void read_single_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); read_single(x); read_single_tuple(t); } } template bool read_single(tuple &tpl) { read_single_tuple(tpl); return true; } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template ::value>::type * = nullptr> inline void write(T x) { x.write(); } template void write(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair val) { write(val.first); write(' '); write(val.second); } template void write_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get(t); write(x); write_tuple(t); } } template bool write(tuple tpl) { write_tuple(tpl); return true; } template void write(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 3 "main.cpp" #line 2 "/home/maspy/compro/library/ds/segtree/segtree.hpp" template struct SegTree { using MX = Monoid; using X = typename MX::value_type; using value_type = X; vc dat; int n, log, size; SegTree() {} SegTree(int n) { build(n); } template SegTree(int n, F f) { build(n, f); } SegTree(const vc& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } X get(int i) { return dat[size + i]; } vc get_all() { return {dat.begin() + size, dat.begin() + size + n}; } void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); } void set(int i, const X& x) { assert(i < n); dat[i += size] = x; while (i >>= 1) update(i); } void multiply(int i, const X& x) { assert(i < n); i += size; dat[i] = Monoid::op(dat[i], x); while (i >>= 1) update(i); } X prod(int L, int R) { assert(0 <= L && L <= R && R <= n); X vl = Monoid::unit(), vr = Monoid::unit(); L += size, R += size; while (L < R) { if (L & 1) vl = Monoid::op(vl, dat[L++]); if (R & 1) vr = Monoid::op(dat[--R], vr); L >>= 1, R >>= 1; } return Monoid::op(vl, vr); } X prod_all() { return dat[1]; } template int max_right(F check, int L) { assert(0 <= L && L <= n && check(Monoid::unit())); if (L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L = 2 * L; if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); } } return L - size; } sm = Monoid::op(sm, dat[L++]); } while ((L & -L) != L); return n; } template int min_left(F check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { R = 2 * R + 1; if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); } } return R + 1 - size; } sm = Monoid::op(dat[R], sm); } while ((R & -R) != R); return 0; } // prod_{l<=i= r) break; if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } }; #line 2 "/home/maspy/compro/library/alg/monoid/min_idx.hpp" template struct Monoid_Min_Idx { using value_type = pair; using X = value_type; static constexpr bool is_small(const X& x, const X& y) { if (x.fi < y.fi) return true; if (x.fi > y.fi) return false; return (tie_is_left ? (x.se < y.se) : (x.se >= y.se)); } static X op(X x, X y) { return (is_small(x, y) ? x : y); } static constexpr X unit() { return {infty, -1}; } static constexpr bool commute = true; }; #line 6 "main.cpp" void solve() { LL(N); VEC(ll, A, N); LL(M); ll mi = MIN(A); for (auto&& x: A) x -= mi; ll K = M / N; /* K 回ずつやりたい [L,R) を、右方向に LIM まで push できるとして解く */ A.eb(0); vi X(N + 1); X[0] = A[0]; auto Ac = cumsum(A); SegTree> seg(N + 1, [&](int i) -> pair { return {A[i], i}; }); auto dfs = [&](auto& dfs, ll L, ll R, ll LIM) -> void { assert(L == 0); // print("begin LRLIM", L, R, LIM); // [L,R) を解いて、R に値を足す if (L == R) return; if (R == L + 1) { ll x = min(LIM, A[L]); X[L] = A[L] - x; X[R] += x; return; } ll M = seg.prod(L, R).se; ll S = Ac[R] - Ac[M] + LIM; dfs(dfs, L, M, min(S, A[M] * K)); ll now = X[M]; ll push = min(now, LIM); X[R] = push; now -= push; FOR_R(i, M, R) { ll x = min(now, A[i]); X[i] = x; now -= x; } assert(now == 0); }; dfs(dfs, 0, N, 0); X.pop_back(); M -= K * N; int p = 0; FOR(i, M) { int j = (i + 1) % N; ll x = min(X[i], A[j] - X[j]); X[i] -= x, X[j] += x; p = j; } X[p] += mi; print(X); } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }