// start A.cpp // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; namespace templates { // type using ll = long long; using ull = unsigned long long; template using pq = priority_queue; template using qp = priority_queue, greater>; #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); // for loop #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) // declare and input // clang-format off #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___); #define VEC(T, A, n) vector A(n); inp(A); #define VVEC(T, A, n, m) vector> A(n, vector(m)); inp(A); // clang-format on // const value const ll MOD1 = 1000000007; const ll MOD9 = 998244353; const double PI = acos(-1); // other macro #ifndef RIN__LOCAL #define endl "\n" #endif #define spa ' ' #define len(A) ll(A.size()) #define all(A) begin(A), end(A) // function vector stoc(string &S) { int n = S.size(); vector ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } string ctos(vector &S) { int n = S.size(); string ret = ""; for (int i = 0; i < n; i++) ret += S[i]; return ret; } template auto min(const T &a) { return *min_element(all(a)); } template auto max(const T &a) { return *max_element(all(a)); } template auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } template T sum(vector &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template vector compression(vector X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } // input and output namespace io { // vector template istream &operator>>(istream &is, vector &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << ' '; } return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // pair template istream &operator>>(istream &is, pair &A) { is >> A.first >> A.second; return is; } template ostream &operator<<(ostream &os, pair &A) { os << A.first << ' ' << A.second; return os; } // vector> template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // set template ostream &operator<<(ostream &os, set &A) { for (auto itr = A.begin(); itr != A.end(); itr++) { os << *itr; if (next(itr) != A.end()) os << ' '; } return os; } // unordered_set template ostream &operator<<(ostream &os, unordered_set &A) { for (auto itr = A.begin(); itr != A.end(); itr++) { os << *itr; if (next(itr) != A.end()) os << ' '; } return os; } // multiset template ostream &operator<<(ostream &os, multiset &A) { for (auto itr = A.begin(); itr != A.end(); itr++) { os << *itr; if (next(itr) != A.end()) os << ' '; } return os; } // unordered_multiset template ostream &operator<<(ostream &os, unordered_multiset &A) { for (auto itr = A.begin(); itr != A.end(); itr++) { os << *itr; if (next(itr) != A.end()) os << endl; } return os; } // map template ostream &operator<<(ostream &os, map &A) { for (auto itr = A.begin(); itr != A.end(); itr++) { os << *itr; if (next(itr) != A.end()) os << endl; } return os; } // unordered_map template ostream &operator<<(ostream &os, unordered_map &A) { for (auto itr = A.begin(); itr != A.end(); itr++) { os << *itr; if (next(itr) != A.end()) os << endl; } return os; } // tuple template struct TuplePrint { static ostream &print(ostream &os, const T &t) { TuplePrint::print(os, t); os << ' ' << get(t); return os; } }; template struct TuplePrint { static ostream &print(ostream &os, const T &t) { os << get<0>(t); return os; } }; template ostream &operator<<(ostream &os, const tuple &t) { TuplePrint::print(os, t); return os; } // queue template ostream &operator<<(ostream &os, queue &A) { auto B = A; while (!B.empty()) { os << B.front(); B.pop(); if (!B.empty()) os << ' '; } return os; } // deque template ostream &operator<<(ostream &os, deque &A) { auto B = A; while (!B.empty()) { os << B.front(); B.pop_front(); if (!B.empty()) os << ' '; } return os; } // stack template ostream &operator<<(ostream &os, stack &A) { auto B = A; stack C; while (!B.empty()) { C.push(B.top()); B.pop(); } while (!C.empty()) { os << C.top(); C.pop(); if (!C.empty()) os << ' '; } return os; } // priority_queue template ostream &operator<<(ostream &os, priority_queue &A) { auto B = A; while (!B.empty()) { os << B.top(); B.pop(); if (!B.empty()) os << endl; } return os; } // bitset template ostream &operator<<(ostream &os, bitset &A) { for (size_t i = 0; i < N; i++) { os << A[i]; } return os; } // io functions void FLUSH() { cout << flush; } void print() { cout << endl; } template void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(forward(tail)...); } template void prisep(vector &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template void priend(T A, S end) { cout << A << end; } template void prispa(T A) { priend(A, spa); } template bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template void inp(T &...a) { (cin >> ... >> a); } } // namespace io using namespace io; // read graph vector> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector> edges(n, vector()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template vector>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector>> edges(n, vector>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template vector>> read_wtree(int n, int indexed = 1) { return read_wedges(n, n - 1, false, indexed); } // yes / no namespace yesno { // yes inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } // no inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // possible inline bool possible(bool f = true) { cout << (f ? "possible" : "impossible") << endl; return f; } inline bool Possible(bool f = true) { cout << (f ? "Possible" : "Impossible") << endl; return f; } inline bool POSSIBLE(bool f = true) { cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // impossible inline bool impossible(bool f = true) { cout << (!f ? "possible" : "impossible") << endl; return f; } inline bool Impossible(bool f = true) { cout << (!f ? "Possible" : "Impossible") << endl; return f; } inline bool IMPOSSIBLE(bool f = true) { cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // Alice Bob inline bool Alice(bool f = true) { cout << (f ? "Alice" : "Bob") << endl; return f; } inline bool Bob(bool f = true) { cout << (f ? "Bob" : "Alice") << endl; return f; } // Takahashi Aoki inline bool Takahashi(bool f = true) { cout << (f ? "Takahashi" : "Aoki") << endl; return f; } inline bool Aoki(bool f = true) { cout << (f ? "Aoki" : "Takahashi") << endl; return f; } } // namespace yesno using namespace yesno; } // namespace templates using namespace templates; // start data_structure/lazySegTree.hpp template struct lazy_segtree { public: explicit lazy_segtree(const vector &v) : _n(int(v.size())) { size = 1; log = 0; while (size < _n) { log++; size <<= 1; } d = vector(2 * size, e()); lz = vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) update(i); } explicit lazy_segtree(int n) : lazy_segtree(vector(n, e())) {} S prod(int l, int r) { if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int l, int r, F f) { if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } private: int _n, size, log; vector d; vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; // end data_structure/lazySegTree.hpp // restart A.cpp // start tree/HLD.hpp struct HLD { int n, path; vector> edges; vector siz; vector par; vector depth; vector path_ind; vector path_root; vector heavy_child; vector isheavy; vector L; vector R; HLD(int n) : n(n) { edges.resize(n); siz.assign(n, -1); par.assign(n, -1); depth.assign(n, -1); path_ind.assign(n, -1); heavy_child.assign(n, -1); isheavy.assign(n, false); L.assign(n, -1); R.assign(n, -1); } void read_edges(int indexed = 1) { int u, v; for (int i = 0; i < n - 1; i++) { cin >> u >> v; u -= indexed; v -= indexed; edges[u].push_back(v); edges[v].push_back(u); } } void add_edge(int u, int v) { edges[u].push_back(v); edges[v].push_back(u); } void build(int root = 0) { depth[root] = 0; stack st; vector route; st.push(root); route.push_back(root); while (!st.empty()) { int pos = st.top(); st.pop(); for (auto npos : edges[pos]) { if (depth[npos] == -1) { depth[npos] = depth[pos] + 1; par[npos] = pos; st.push(npos); route.push_back(npos); } } } reverse(route.begin(), route.end()); for (auto pos : route) { siz[pos] = 1; int ma = -1; for (auto npos : edges[pos]) { if (depth[npos] > depth[pos]) siz[pos] += siz[npos]; if (siz[npos] > ma) { ma = siz[npos]; heavy_child[pos] = npos; } } if (heavy_child[pos] != -1) isheavy[heavy_child[pos]] = true; } isheavy[root] = true; path = 0; st.push(~root); st.push(root); path_root.push_back(root); int cc = 0; while (!st.empty()) { int pos = st.top(); st.pop(); if (pos >= 0) { L[pos] = cc++; if (!isheavy[pos]) { path++; path_root.push_back(pos); } path_ind[pos] = path; for (auto npos : edges[pos]) { if (npos == par[pos] || npos == heavy_child[pos]) continue; st.push(~npos); st.push(npos); } if (heavy_child[pos] != -1) { int npos = heavy_child[pos]; st.push(~npos); st.push(npos); } } else { pos = ~pos; R[pos] = cc; } } } vector> get_path(int u, int v) { vector ll; vector rr; ll.push_back(u); rr.push_back(v); while (path_ind[u] != path_ind[v]) { if (depth[path_root[path_ind[u]]] >= depth[path_root[path_ind[v]]]) { u = path_root[path_ind[u]]; ll.push_back(u); u = par[u]; ll.push_back(u); } else { v = path_root[path_ind[v]]; rr.push_back(v); v = par[v]; rr.push_back(v); } } reverse(rr.begin(), rr.end()); ll.insert(ll.end(), rr.begin(), rr.end()); int n = ll.size(); vector> res(n / 2); for (int i = 0; i < n; i += 2) { res[i / 2] = {ll[i], ll[i + 1]}; } return res; } int lca(int u, int v) { while (path_ind[u] != path_ind[v]) { if (depth[path_root[path_ind[u]]] >= depth[path_root[path_ind[v]]]) u = par[path_root[path_ind[u]]]; else v = par[path_root[path_ind[v]]]; } return (depth[u] <= depth[v]) ? u : v; } int dist(int u, int v) { int p = lca(u, v); return depth[u] + depth[v] - 2 * depth[p]; } template vector reorder(vector &A, bool rev = false) { assert(n == A.size()); vector ret(n); for (int i = 0; i < n; i++) { ret[L[i]] = A[i]; } if (rev) reverse(ret.begin(), ret.end()); return ret; } }; // end tree/HLD.hpp // restart A.cpp const ll inf = 1LL << 60; struct S { ll x; int idx; }; S op(S l, S r) { return l.x < r.x ? l : r; } S e() { return {inf, -1}; } using F = ll; S mapping(F f, S x) { return S{min(inf, f + x.x), x.idx}; } F composition(F f, F g) { return min(f + g, inf); } F id() { return 0LL; } struct S2 { ll x; ll cnt; }; S2 op2(S2 l, S2 r) { if (l.x == r.x) return {l.x, l.cnt + r.cnt}; else return l.x < r.x ? l : r; } S2 e2() { return S2{inf, 0}; } using F2 = ll; S2 mapping2(F2 f, S2 x) { return S2{min(inf, x.x + f), x.cnt}; } F2 composition2(F2 f, F2 g) { return min(f + g, inf); } F2 id2() { return 0LL; } void solve() { INT(n, Q); using P = pair; HLD hld(n); vvec(P, edges, n); fori(i, n - 1) { INT(a, b); LL(c); a--; b--; edges[a].emplace_back(b, c); edges[b].emplace_back(a, c); hld.add_edge(a, b); } hld.build(); vec(S, C, n); vec(int, dist, n, -1); C[0] = e(); dist[0] = 0; stack st; st.push(0); while (!st.empty()) { int pos = st.top(); st.pop(); for (auto [npos, w] : edges[pos]) { if (dist[npos] == -1) { C[npos] = {w, npos}; dist[npos] = dist[pos] + 1; st.push(npos); } } } C = hld.reorder(C); lazy_segtree seg(C); vec(S2, ini, n, {0, 1}); lazy_segtree seg2(ini); fori(Q) { LL(t); if (t == 1) { LL(v, x); v--; for (auto [u, v] : hld.get_path(0, v)) { int uu = hld.L[u]; int vv = hld.L[v]; if (uu > vv) swap(uu, vv); seg.apply(uu, vv + 1, -x); } ll mi = inf; int ind = 0; while (1) { auto res = seg.prod(hld.L[ind] + 1, hld.R[ind]); if (res.x > 0) break; ind = res.idx; } if (ind != 0) { ll add = C[hld.L[ind]].x - seg.prod(hld.L[ind], hld.L[ind] + 1).x; seg.apply(hld.L[ind], hld.R[ind], inf); int p = hld.par[ind]; for (auto [u, v] : hld.get_path(0, p)) { int uu = hld.L[u]; int vv = hld.L[v]; if (uu > vv) swap(uu, vv); seg.apply(uu, vv + 1, add); } seg2.apply(hld.L[ind], hld.R[ind], 1); } } else { auto res = seg2.all_prod(); print(res.x == 0 ? res.cnt : 0); } } } int main() { cin.tie(0)->sync_with_stdio(0); // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while (t--) solve(); return 0; } // end A.cpp