import sys, time, random
from collections import deque, Counter, defaultdict
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 63 - 1
mod = 998244353
class Combinatorics():
    def __init__(self, mod, maxi):
        self.mod = mod
        self.maxi = maxi
        self.facs = [1] * (maxi + 1)
        self.factinvs = [1] * (maxi + 1)
        self.invs = [1] * (maxi + 1)
        for i in range(2, self.maxi + 1):
            self.facs[i] = ((self.facs[i-1] * i) % self.mod)
            self.invs[i] = (-self.invs[self.mod % i] * (self.mod // i)) % self.mod
            self.factinvs[i] = (self.factinvs[i-1] * self.invs[i]) % self.mod
            
    def choose(self, n, k) -> int:
        if k < 0 or k > n: return 0
        if k == 0 or k == n: return 1
        k = min(k, n - k)
        return (((self.facs[n] * self.factinvs[k]) % self.mod) * self.factinvs[n-k]) % self.mod
    
    def perm(self, n, k) -> int:
        return (self.choose(n, k) * self.facs[k]) % self.mod

    def homop(self, n, k) -> int:
        if n == k == 0:
            return 1
        return self.choose(n + k - 1, k)
C = Combinatorics(mod, 10 ** 6 + 2)
n, m, k = mi()
graph = [[] for _ in range(n)]
invgraph = [[] for _ in range(n)]
S = set()

for _ in range(k):
    x, y = mi()
    x -= 1; y -= 1
    S.add(x)
    S.add(y)
    graph[x].append(y)
    invgraph[y].append(x)

if k == 0:
    ans = (n - m) * C.facs[n - 1]
    ans %= mod
else:
    S = list(sorted(S))
    N = len(S)
    dp = [0 for _ in range(1 << N)]
    subs = len([i for i in S if i < m])
    mains = len([i for i in S if i >= m])
    mgraph = [[] for _ in range(N)]
    minvgraph = [[] for _ in range(N)]

    for i in range(N):
        for to in graph[S[i]]:
            mgraph[i].append(S.index(to))
            minvgraph[S.index(to)].append(i)
    dp[0] = 1
    for bit in range(1 << N):
        for i in range(N):
            if 1 & (bit >> i):
                f = True
                for to in minvgraph[i]:
                    if 1 & (bit >> to):
                        f = False
                        break
                if f:
                    dp[bit] += dp[bit ^ (1 << i)]
                    dp[bit] %= mod
    

    ans = 0
    for i in range(m, n):
        if i in S and len(invgraph[i]) == 0:
            j = S.index(i)
            ans += C.perm(n - 1, n - N) * dp[((1 << N) - 1) ^ (1 << j)]
            ans %= mod
        if i not in S:
            ans += C.perm(n - 1, n - N - 1) * dp[(1 << N) - 1]
            ans %= mod

        
print(ans)