import sys, time, random from collections import deque, Counter, defaultdict input = lambda: sys.stdin.readline().rstrip() ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) inf = 2 ** 63 - 1 mod = 998244353 class Combinatorics(): def __init__(self, mod, maxi): self.mod = mod self.maxi = maxi self.facs = [1] * (maxi + 1) self.factinvs = [1] * (maxi + 1) self.invs = [1] * (maxi + 1) for i in range(2, self.maxi + 1): self.facs[i] = ((self.facs[i-1] * i) % self.mod) self.invs[i] = (-self.invs[self.mod % i] * (self.mod // i)) % self.mod self.factinvs[i] = (self.factinvs[i-1] * self.invs[i]) % self.mod def choose(self, n, k) -> int: if k < 0 or k > n: return 0 if k == 0 or k == n: return 1 k = min(k, n - k) return (((self.facs[n] * self.factinvs[k]) % self.mod) * self.factinvs[n-k]) % self.mod def perm(self, n, k) -> int: return (self.choose(n, k) * self.facs[k]) % self.mod def homop(self, n, k) -> int: if n == k == 0: return 1 return self.choose(n + k - 1, k) C = Combinatorics(mod, 10 ** 6 + 2) n, m, k = mi() graph = [[] for _ in range(n)] invgraph = [[] for _ in range(n)] S = set() for _ in range(k): x, y = mi() x -= 1; y -= 1 S.add(x) S.add(y) graph[x].append(y) invgraph[y].append(x) if k == 0: ans = (n - m) * C.facs[n - 1] ans %= mod else: S = list(sorted(S)) N = len(S) dp = [0 for _ in range(1 << N)] subs = len([i for i in S if i < m]) mains = len([i for i in S if i >= m]) mgraph = [[] for _ in range(N)] minvgraph = [[] for _ in range(N)] for i in range(N): for to in graph[S[i]]: mgraph[i].append(S.index(to)) minvgraph[S.index(to)].append(i) dp[0] = 1 for bit in range(1 << N): for i in range(N): if 1 & (bit >> i): f = True for to in minvgraph[i]: if 1 & (bit >> to): f = False break if f: dp[bit] += dp[bit ^ (1 << i)] dp[bit] %= mod ans = 0 for i in range(m, n): if i in S and len(invgraph[i]) == 0: j = S.index(i) ans += C.perm(n - 1, n - N) * dp[((1 << N) - 1) ^ (1 << j)] ans %= mod if i not in S: ans += C.perm(n - 1, n - N - 1) * dp[(1 << N) - 1] ans %= mod print(ans)